Search results for: geophysical database referenced navigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2190

Search results for: geophysical database referenced navigation

1500 A Research on Determining the Viability of a Job Board Website for Refugees in Kenya

Authors: Prince Mugoya, Collins Oduor Ondiek, Patrick Kanyi Wamuyu

Abstract:

Refugee Job Board Website is a web-based application that provides a platform for organizations to post jobs specifically for refugees. Organizations upload job opportunities and refugees can view them on the website. The website also allows refugees to input their skills and qualifications. The methodology used to develop this system is a waterfall (traditional) methodology. Software development tools include Brackets which will be used to code the website and PhpMyAdmin to store all the data in a database.

Keywords: information technology, refugee, skills, utilization, economy, jobs

Procedia PDF Downloads 165
1499 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 575
1498 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 82
1497 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired

Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo

Abstract:

Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.

Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems

Procedia PDF Downloads 81
1496 DHL CSI Solution Design Project

Authors: Mohammed Al-Yamani, Yaser Miaji

Abstract:

DHL Customer Solutions and Innovation Department (CSI) have been experiencing difficulties while comparing quotes for different customers in different years. Currently, the employees are processing data by opening several loaded Excel files where the quotes are and manually copying values to another Excel Workbook where the comparison is made. This project consists of developing a new and effective database for DHL CSI department so that information is stored altogether on the same catalog. That being said, we have been assigned to find an efficient algorithm that can deal with the different formats of the Excel Workbooks to copy and store the express customer rates for core products (DOX, WPX, IMP) for comparisons purposes.

Keywords: DHL, solution design, ORACLE, EXCEL

Procedia PDF Downloads 410
1495 The Position of Space weather in Africa-Education and Outreach

Authors: Babagana Abubakar, Alhaji Kuya

Abstract:

Although the field of Space weather science is a young field among the space sciences, but yet history has it that activities related to this science began since the year 1859 when the great solar storm happened which resulted in the disruptions of telegraphs operations around the World at that particular time subsequently making it possible for the scientist Richard Carrington to be able to connect the Solar flare observed a day earlier before the great storm and the great deflection of the Earth’s Magnetic field (geometric storm) simultaneous with the telegraph disruption. However years later as at today with the advent of and the coming into existence of the Explorer 1, the Luna 1 and the establishments of the United States International Space Weather Program, International Geophysical Year (IGY) as well as the International Center for Space Weather Sciences and Education (ICSWSE) have made us understand the Space weather better and enable us well define the field of Space weather science. Despite the successes recorded in the development of Space sciences as a whole over the last century and the coming onboard of specialized bodies/programs on space weather like the International Space Weather Program and the ICSWSE, the majority of Africans including institutions, research organizations and even some governments are still ignorant about the existence of theSpace weather science,because apart from some very few countries like South Africa, Nigeria and Egypt among some few others the majority of the African nations and their academic institutions have no knowledge or idea about the existence of this field of Space science (Space weather).

Keywords: Africa, space, weather, education, science

Procedia PDF Downloads 449
1494 Physical Activity Patterns and Status of Adolescent Learners from Low and Middle Socio-Economic Status Communities in Kwazulu-Natal Province

Authors: Patrick Mkhanyiseli Zimu

Abstract:

A sedentary lifestyle and insufficient physical activity (PA) increases the risk of developing chronic non-communicable diseases (NCDs). Knowing the PA levels and patterns of adolescents from different socio-economic backgrounds is important to direct programs at schools and in communities to prevent NCDs risk factors, which can have long-term effects on the health of the adolescents. The study aimed to investigate adolescent PA levels, patterns, and influencing factors (age, gender, socio-economic status). The 353 participants (203 females and 150 males) from eight low socio-economic (LSES) and middle socio-economic (MSES) public secondary schools completed a Physical Activity Questionnaire for Adolescents (PAQ-A). The PAQ-A is a seven day recall instrument that assesses general estimates of PA levels and patterns for high school learners in Grades 9-12 and provides a summary of physical activity scores derived from seven items, each scored on a 5-point Likert scale. The seven items were PA during spare time and five domains (during physical education, lunch break, after school, in the evenings, on the weekend) and selecting one statement that described participant’s physical activity behaviour. The PA Levels (x̄=2.61, SD=.74) were below the international PA cut-off points of x̄=2.75. Physical education (PE) showed the highest PA score (x̄=3.05, SD=1.21) and lunch break showed the lowest PA score (x̄=2.09, SD=1.14). Positive correlations occurred between PA levels and SES (r=.122, p=0.022), and PA and gender (r=.223, p= 0.0001). LSES participant’s PA score was significantly lower (x̄=2.52; SD=.73) than those from MSES (x̄=2.70; SD=.74, p=0.022). Adolescents from low and middle socio-economic status communities are not sufficiently active. Their average PA score of 2.61 is below the PAQ-A global criterion referenced cut-off points of 2.75, which is considered sufficiently physically active for adolescents to ensure both short- and long-term health benefits. As adolescents are not sufficiently active, collaborative school and community PA programs need to be implemented to supplement physical education in order to prevent short- and long-term health problems.

Keywords: adolescents, health promotion, physical activity, physical education

Procedia PDF Downloads 95
1493 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
1492 Associated Factors of Hypertension, Hypercholesterolemia and Double Burden Hypertension-Hypercholesterolemia in Patients With Congestive Heart Failure: Hospital Based Study

Authors: Pierre Mintom, William Djeukeu Asongni, Michelle Moni, William Dakam, Christine Fernande Nyangono Biyegue.

Abstract:

Background: In order to prevent congestive heart failure, control of hypertension and hypercholesterolemia is necessary because those risk factors frequently occur in combination. Objective: The aim of the study is to determine the prevalence and risk factors of hypertension, hypercholesterolemia and double burden HTA-Hypercholesterolemia in patients with congestive heart failure. Methodology: A database of 98 patients suffering from congestive heart failure was used. The latter were recruited from August 15, 2017, to March 5, 2018, in the Cardiology department of Deido District Hospital of Douala. This database provides information on sociodemographic parameters, biochemical examinations, characteristics of heart failure and food consumption. ESC/ESH and NCEP-ATPIII definitions were used to define Hypercholesterolemia (total cholesterol ≥200mg/dl), Hypertension (SBP≥140mmHg and/or DBP≥90mmHg). Double burden hypertension-hypercholesterolemia was defined as follows: total cholesterol (CT)≥200mg/dl, SBP≥140mmHg and DBP≥90mmHg. Results: The prevalence of hypertension (HTA), hypercholesterolemia (hyperchol) and double burden HTA-Hyperchol were 61.2%, 66.3% and 45.9%, respectively. No sociodemographic factor was associated with hypertension, hypercholesterolemia and double burden, but Male gender was significantly associated (p<0.05) with hypercholesterolemia. HypoHDLemia significantly increased hypercholesterolemia and the double burden by 19.664 times (p=0.001) and 14.968 times (p=0.021), respectively. Regarding dietary habits, the consumption of rice, peanuts and derivatives and cottonseed oil respectively significantly (p<0.05) exposed to the occurrence of hypertension. The consumption of tomatoes, green bananas, corn and derivatives, peanuts and derivatives and cottonseed oil significantly exposed (p<0.05) to the occurrence of hypercholesterolemia. The consumption of palm oil and cottonseed oil exposed the occurrence of the double burden of hypertension-hypercholesterolemia. Consumption of eggs protects against hypercholesterolemia, and consumption of peanuts and tomatoes protects against the double burden. Conclusion: hypercholesterolemia associated with hypertension appears as a complicating factor of congestive heart failure. Key risk factors are mainly diet-based, suggesting the importance of nutritional education for patients. New management protocols emphasizing diet should be considered.

Keywords: risk factors, hypertension, hypercholesterolemia, congestive heart failure

Procedia PDF Downloads 68
1491 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 81
1490 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 354
1489 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data

Authors: Michelangelo Sofo, Giuseppe Labianca

Abstract:

In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.

Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm

Procedia PDF Downloads 23
1488 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 30
1487 A Study of the Atlantoaxial Fracture or Dislocation in Motorcyclists with Helmet Accidents

Authors: Shao-Huang Wu, Ai-Yun Wu, Meng-Chen Wu, Chun-Liang Wu, Kai-Ping Shaw, Hsiao-Ting Chen

Abstract:

Objective: To analyze the forensic autopsy data of known passengers and compare it with the National database of the autopsy report in 2017, and obtain the special patterned injuries, which can be used as the reference for the reconstruction of hit-and-run motor vehicle accidents. Methods: Analyze the items of the Motor Vehicle Accident Report, including Date of accident, Time occurred, Day, Acc. severity, Acc. Location, Acc. Class, Collision with Vehicle, Motorcyclists Codes, Safety equipment use, etc. Analyzed the items of the Autopsy Report included, including General Description, Clothing and Valuables, External Examination, Head and Neck Trauma, Trunk Trauma, Other Injuries, Internal Examination, Associated Items, Autopsy Determinations, etc. Materials: Case 1. The process of injury formation: the car was chased forward and collided with the scooter. The passenger wearing the helmet fell to the ground. The helmet crashed under the bottom of the sedan, and the bottom of the sedan was raised. Additionally, the sedan was hit on the left by the other sedan behind, resulting in the front sedan turning 180 degrees on the spot. The passenger’s head was rotated, and the cervical spine was fractured. Injuries: 1. Fracture of atlantoaxial joint 2. Fracture of the left clavicle, scapula, and proximal humerus 3. Fracture of the 1-10 left ribs and 2-7 right ribs with lung contusion and hemothorax 4. Fracture of the transverse process of 2-5 lumbar vertebras 5. Comminuted fracture of the right femur 6. Suspected subarachnoid space and subdural hemorrhage 7. Laceration of the spleen. Case 2. The process of injury formation: The motorcyclist wearing the helmet fell to the left by himself, and his chest was crushed by the car going straight. Only his upper body was under the car and the helmet finally fell off. Injuries: 1. Dislocation of atlantoaxial joint 2. Laceration on the left posterior occipital 3. Laceration on the left frontal 4. Laceration on the left side of the chin 5. Strip bruising on the anterior neck 6. Open rib fracture of the right chest wall 7. Comminuted fracture of both 1-12 ribs 8. Fracture of the sternum 9. Rupture of the left lung 10. Rupture of the left and right atria, heart tip and several large vessels 11. The aortic root is nearly transected 12. Severe rupture of the liver. Results: The common features of the two cases were the fracture or dislocation of the atlantoaxial joint and both helmets that were crashed. There were no atlantoaxial fractures or dislocations in 27 pedestrians (without wearing a helmet) versus motor vehicle accidents in 2017 the National database of an autopsy report, but there were two atlantoaxial fracture or dislocation cases in the database, both of which were cases of falling from height. Conclusion: The cervical spine fracture injury of the motorcyclist, who was wearing a helmet, is very likely to be a patterned injury caused by his/her fall and rollover under the sedan. It could provide a reference for forensic peers.

Keywords: patterned injuries, atlantoaxial fracture or dislocation, accident reconstruction, motorcycle accident with helmet, forensic autopsy data

Procedia PDF Downloads 93
1486 Eco-Drive Predictive Analytics

Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie

Abstract:

With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.

Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning

Procedia PDF Downloads 304
1485 The Correlation between Clostridium Difficile Infection and Bronchial Lung Cancer Occurrence

Authors: Molnar Catalina, Lexi Frankel, Amalia Ardeljan, Enoch Kim, Marissa Dallara, Omar Rashid

Abstract:

Introduction: Clostridium difficile (C. diff) is a toxin-producing bacteria that can cause diarrhea and colitis. U.S. Center for Disease Control and Prevention revealed that C. difficile infection (CDI) has increased from 31 cases per 100,000 persons per year in 1996 to 61 per 100,000 in 2003. Approximately 500,000 cases per year occur in the United States. After exposure, the bacteria colonize the colon, where it adheres to the intestinal epithelium where it produces two toxins: TcdA and TcdB. TcdA affects the intestinal epithelium, causing fluid secretion, inflammation, and tissue necrosis, while TcdB acts as a cytotoxin purpose of this study was to evaluate the association between C diff infection and bronchial lung cancer development. Methods: Using ICD- 9 and ICD-10 codes, the data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to assess the patients infected with C diff as opposed to the non-infected patients. The Holy Cross Health, Fort Lauderdale, granted access to the database for the purpose of academic research. Patients were matched for age and Charlson Comorbidity Index (CCI). Standard statistical methods were used. Results: Bronchial lung cancer occurrence in the population not infected with C diff infection was 4741, as opposed to the population infected with C. diff, where 2039 cases of lung cancer were observed. The difference was statistically significant (p-value < 2.2x10^e-16), which reveals that C diff might be protective against bronchial lung cancer. The data was then matched by treatment to create to minimize the effect of treatment bias. Bronchial cancer incidence was 422 and 861 in infected vs. non-infected (p-value of < 2.2x10^e-16), which once more indicates that C diff infection could be beneficial in diminishing bronchial cancer development. Conclusion: This retrospective study conveys a statistical correlation between C diff infection and decreased incidence of lung bronchial cancer. Further studies are needed to comprehend the protective mechanisms of C. Diff infection on lung cancer.

Keywords: C. diff, lung cancer, protective, microbiology

Procedia PDF Downloads 235
1484 Analysis of Possible Draught Size of Container Vessels on the Lower Danube

Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić

Abstract:

Water transport could be the backbone of the future European combined transport system. The future transport policy in landlocked countries from the Danube Region has to be based on inland waterway transport (IWT). The development of the container transport on inland waterways depends directly on technical-exploitative characteristics of the network of inland waterways. Research of navigational abilities of inland waterways is the basic step in transport planning. The size of the vessel’s draught (T) is the limiting value in project tasks and it depends on the depth of the waterway. Navigation characteristics of rivers have to be determined as precise as possible, especially from the aspect of determination of the possible draught of vessels. This article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).

Keywords: container vessel, draught, probability, the Danube

Procedia PDF Downloads 461
1483 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 158
1482 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 319
1481 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 361
1480 Roots of Terror in Pakistan: Analyzing the Effects of Education and Economic Deprivation on Incidences of Terrorism

Authors: Laraib Niaz

Abstract:

This paper analyzes the ways in which education and economic deprivation are linked to terrorism in Pakistan using data for terrorist incidents from the Global Terrorism Database (GTD). It employs the technique of negative binomial regression for the years between 1990 and 2013, presenting evidence for a positive association between education and terrorism. Conversely, a negative correlation with economic deprivation is signified in the results. The study highlights the element of radicalization as witnessed in the curriculum and textbooks of public schools as a possible reason for extremism, which in turn may lead to terrorism.

Keywords: education, Pakistan, terrorism, poverty

Procedia PDF Downloads 387
1479 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times

Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen

Abstract:

With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.

Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines

Procedia PDF Downloads 68
1478 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 144
1477 Nighttime Dehaze - Enhancement

Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout

Abstract:

In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.

Keywords: dehazing, image enhancement, nighttime, computer vision

Procedia PDF Downloads 157
1476 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding

Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo

Abstract:

Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode database

Keywords: BOLD, DNA barcoding, nigeria, sharks

Procedia PDF Downloads 166
1475 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
1474 Strain Softening of Soil under Cyclic Loading

Authors: Kobid Panthi, Suttisak Soralump, Suriyon Prempramote

Abstract:

In June 27, 2014 slope movement was observed in upstream side of Khlong Pa Bon Dam, Thailand. The slide did not have any major catastrophic impact on the dam structure but raised a very important question; why did the slide occur after 10 years of operation? Various site investigations (Bore Hole Test, SASW, Echo Sounding, and Geophysical Survey), laboratory analysis and numerical modelling using SIGMA/W and SLOPE/W were conducted to determine the cause of slope movement. It was observed that the dam had undergone the greatest differential drawdown in its operational history in the year 2014 and was termed as the major cause of movement. From the laboratory tests, it was found that the shear strength of clay had decreased with a period of time and was near its residual value. The cyclic movement of water, i.e., reservoir filling and emptying was coined out to be the major cause for the reduction of shear strength. The numerical analysis was carried out using a modified cam clay (MCC) model to determine the strain softening behavior of the clay. The strain accumulation was observed in the slope with each reservoir cycle triggering the slope failure in 2014. It can be inferred that if there was no major drawdown in 2014, the slope would not have failed but eventually would have failed after a long period of time. If there was no major drawdown in 2014, the slope would not have failed. However, even if there hadn’t been a drawdown, it would have failed eventually in the long run.

Keywords: slope movement, strain softening, residual strength, modified cam clay

Procedia PDF Downloads 132
1473 On the Limits of Board Diversity: Impact of Network Effect on Director Appointments

Authors: Vijay Marisetty, Poonam Singh

Abstract:

Research on the effect of director's network connections on investor welfare is inconclusive. Some studies suggest that directors' connections are beneficial, in terms of, improving earnings information, firms valuation for new investors. On the other hand, adverse effects of directorial networks are also reported, in terms of higher earnings management, options back dating fraud, reduction in firm performance, lower board monitoring. From regulatory perspective, the role of directorial networks on corporate welfare is crucial. Cognizant of the possible ill effects associated with directorial networks, large investors, for better representation on the boards, are building their own database of prospective directors who are highly qualified, however, sourced from outside the highly connected directorial labor market. For instance, following Dodd-Frank Reform Act, California Public Employees' Retirement Systems (CalPERs) has initiated a database for registering aspiring and highly qualified directors to nominate them for board seats (proxy access). Our paper stems from this background and tries to explore the chances of outside directors getting directorships who lack established network connections. The paper is able to identify such aspiring directors' information by accessing a unique Indian data sourced from an online portal that aims to match the supply of registered aspirants with the growing demand for outside directors in India. The online portal's tie-up with stock exchanges ensures firms to access the new pool of directors. Such direct access to the background details of aspiring directors over a period of 10 years, allows us to examine the chances of aspiring directors without corporate network, to enter directorial network. Using this resume data of 16105 aspiring corporate directors in India, who have no prior board experience in the directorial labor market, the paper analyses the entry dynamics in corporate directors' labor market. The database also allows us to investigate the value of corporate network by comparing non-network new entrants with incumbent networked directors. The study develops measures of network centrality and network degree based on merit, i.e. network of individuals belonging to elite educational institutions, like Indian Institute of Management (IIM) or Indian Institute of Technology (IIT) and based on job or company, i.e. network of individuals serving in the same company. The paper then measures the impact of these networks on the appointment of first time directors and subsequent appointment of directors. The paper reports the following main results: 1. The likelihood of becoming a corporate director, without corporate network strength, is only 1 out 100 aspirants. This is inspite of comparable educational background and similar duration of corporate experience; 2. Aspiring non-network directors' elite educational ties help them to secure directorships. However, for post-board appointments, their newly acquired corporate network strength overtakes as their main determinant for subsequent board appointments and compensation. The results thus highlight the limitations in increasing board diversity.

Keywords: aspiring corporate directors, board diversity, director labor market, director networks

Procedia PDF Downloads 312
1472 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan

Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed

Abstract:

The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 429
1471 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration

Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.

Abstract:

Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.

Keywords: artificial intelligence, space exploration, space missions, deep learning

Procedia PDF Downloads 33