Search results for: geometric and topological data models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29409

Search results for: geometric and topological data models

28719 Dynamics of the Landscape in the Different Colonization Models Implemented in the Legal Amazon

Authors: Valdir Moura, FranciléIa De Oliveira E. Silva, Erivelto Mercante, Ranieli Dos Anjos De Souza, Jerry Adriani Johann

Abstract:

Several colonization projects were implemented in the Brazilian Legal Amazon in the 1970s and 1980s. Among all of these colonization projects, the most prominent were those with the Fishbone and Topographic models. Within this scope, the projects of settlements known as Anari and Machadinho were created, which stood out because they are contiguous areas with different models and structure of occupation and colonization. The main objective of this work was to evaluate the dynamics of Land-Use and Land-Cover (LULC) in two different colonization models, implanted in the State of Rondonia in the 1980s. The Fishbone and Topographic models were implanted in the Anari and Machadinho settlements respectively. The understanding of these two forms of occupation will help in future colonization programs of the Brazilian Legal Amazon. These settlements are contiguous areas with different occupancy structures. A 32-year Landsat time series (1984-2016) was used to evaluate the rates and trends in the LULC process in the different colonization models. In the different occupation models analyzed, the results showed a rapid loss of primary and secondary forests (deforestation), mainly due to the dynamics of use, established by the Agriculture/Pasture (A/P) relation and, with heavy dependence due to road construction.

Keywords: land-cover, deforestation, rate fragments, remote sensing, secondary succession

Procedia PDF Downloads 134
28718 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 45
28717 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 434
28716 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 140
28715 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 337
28714 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: forecasting, generalized extreme value (GEV), meteorology, return level

Procedia PDF Downloads 477
28713 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 550
28712 An Empirical Study of the Impacts of Big Data on Firm Performance

Authors: Thuan Nguyen

Abstract:

In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.

Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient

Procedia PDF Downloads 243
28711 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)

Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani

Abstract:

This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.

Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition

Procedia PDF Downloads 167
28710 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease

Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 119
28709 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 160
28708 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 78
28707 Distance and Coverage: An Assessment of Location-Allocation Models for Fire Stations in Kuwait City, Kuwait

Authors: Saad M. Algharib

Abstract:

The major concern of planners when placing fire stations is finding their optimal locations such that the fire companies can reach fire locations within reasonable response time or distance. Planners are also concerned with the numbers of fire stations that are needed to cover all service areas and the fires, as demands, with standard response time or distance. One of the tools for such analysis is location-allocation models. Location-allocation models enable planners to determine the optimal locations of facilities in an area in order to serve regional demands in the most efficient way. The purpose of this study is to examine the geographic distribution of the existing fire stations in Kuwait City. This study utilized location-allocation models within the Geographic Information System (GIS) environment and a number of statistical functions to assess the current locations of fire stations in Kuwait City. Further, this study investigated how well all service areas are covered and how many and where additional fire stations are needed. Four different location-allocation models were compared to find which models cover more demands than the others, given the same number of fire stations. This study tests many ways to combine variables instead of using one variable at a time when applying these models in order to create a new measurement that influences the optimal locations for locating fire stations. This study also tests how location-allocation models are sensitive to different levels of spatial dependency. The results indicate that there are some districts in Kuwait City that are not covered by the existing fire stations. These uncovered districts are clustered together. This study also identifies where to locate the new fire stations. This study provides users of these models a new variable that can assist them to select the best locations for fire stations. The results include information about how the location-allocation models behave in response to different levels of spatial dependency of demands. The results show that these models perform better with clustered demands. From the additional analysis carried out in this study, it can be concluded that these models applied differently at different spatial patterns.

Keywords: geographic information science, GIS, location-allocation models, geography

Procedia PDF Downloads 176
28706 An Application of Remote Sensing for Modeling Local Warming Trend

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 338
28705 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 442
28704 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 359
28703 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme

Procedia PDF Downloads 376
28702 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi

Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale

Abstract:

Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.

Keywords: health care, out-patient department, queuing model, sensitivity analysis

Procedia PDF Downloads 432
28701 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 122
28700 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix

Authors: Khodzhaberdi Allaberdiev

Abstract:

In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.

Keywords: epoxies, interface, modeling, polyamide fibers

Procedia PDF Downloads 265
28699 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 118
28698 Social Entrepreneurship on Islamic Perspective: Identifying Research Gap

Authors: Mohd Adib Abd Muin, Shuhairimi Abdullah, Azizan Bahari

Abstract:

Problem: The research problem is lacking of model on social entrepreneurship that focus on Islamic perspective. Objective: The objective of this paper is to analyse the existing model on social entrepreneurship and to identify the research gap on Islamic perspective from existing models. Research Methodology: The research method used in this study is literature review and comparative analysis from 6 existing models of social entrepreneurship. Finding: The research finding shows that 6 existing models on social entrepreneurship has been analysed and it shows that the existing models on social entrepreneurship do not emphasize on Islamic perspective.

Keywords: social entrepreneurship, Islamic perspective, research gap, business management

Procedia PDF Downloads 354
28697 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring

Procedia PDF Downloads 244
28696 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 208
28695 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: industrial drying, pistachio, quality properties, traditional drying

Procedia PDF Downloads 335
28694 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
28693 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 345
28692 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 501
28691 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue

Authors: Onur Karaman, Ceren Karaman

Abstract:

In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.

Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel

Procedia PDF Downloads 295
28690 Fatigue Life Estimation of Tubular Joints - A Comparative Study

Authors: Jeron Maheswaran, Sudath C. Siriwardane

Abstract:

In fatigue analysis, the structural detail of tubular joint has taken great attention among engineers. The DNV-RP-C203 is covering this topic quite well for simple and clear joint cases. For complex joint and geometry, where joint classification isn’t available and limitation on validity range of non-dimensional geometric parameters, the challenges become a fact among engineers. The classification of joint is important to carry out through the fatigue analysis. These joint configurations are identified by the connectivity and the load distribution of tubular joints. To overcome these problems to some extent, this paper compare the fatigue life of tubular joints in offshore jacket according to the stress concentration factors (SCF) in DNV-RP-C203 and finite element method employed Abaqus/CAE. The paper presents the geometric details, material properties and considered load history of the jacket structure. Describe the global structural analysis and identification of critical tubular joints for fatigue life estimation. Hence fatigue life is determined based on the guidelines provided by design codes. Fatigue analysis of tubular joints is conducted using finite element employed Abaqus/CAE [4] as next major step. Finally, obtained SCFs and fatigue lives are compared and their significances are discussed.

Keywords: fatigue life, stress-concentration factor, finite element analysis, offshore jacket structure

Procedia PDF Downloads 451