Search results for: forest degradation
1905 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1751904 Experimental Setup of Corona Discharge on Dye Degradation for Science Education
Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish
Abstract:
The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education
Procedia PDF Downloads 681903 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals
Authors: Kalyani Mer
Abstract:
Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation
Procedia PDF Downloads 1331902 Narrative Point of View in Nature Documentary Films: A Study of The Cove (2009), Tale of a Forest (2012), and Before the Flood (2016)
Authors: Sakshi Yadav, Sushila Shekhawat
Abstract:
This study addresses different types of points of view as seen in nature documentary films with the help of three eco documentaries, and it would be significant in understanding the role of the narrative point of view as a tool for showing and telling in documentaries. Narrative analysis of a film forms an essential aspect of the discourse of scholarship in film studies. Narration is the chain of events occurring in time and space. The notion of narrative provides the idea of coherence and wholeness to the story. There are various components that the narration carries, one of which is the perspective or point of view. The narrator plays the role of a mediator between the film and the audience; thus, his perspective influences the way the audience interprets the film. Feature films have been analyzed through narrative points of view; however, this research intends to conduct it from the angle of a nature documentary film. The study will examine narrative viewpoints unique to nature documentary films using three ecological documentary films-The Cove (2009), Tale of a forest (2012), and Before the flood (2016). This research will apply the framework of narrative theory and will investigate the impact of the different types of narrative points of view, as each portrays the human-nature relationship from a different standpoint, and it will also study the effect that the narrative point of view has on the mode of these eco documentaries.Keywords: ecodocumentary, narrative, human-nature relationship, point of view
Procedia PDF Downloads 881901 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA
Authors: Yi-Guang Li, Suresh Sampath
Abstract:
Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring
Procedia PDF Downloads 861900 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3161899 Biologic Materials- Ecological Living Network
Authors: Ina Dajci
Abstract:
Biologic Materials presents groundbreaking transdisciplinary research aimed at fostering new collaborative models across the Built Environment, Forestry, and Agriculture sectors. This initiative seeks to establish innovative paradigms for local and global material flows by developing a biocompatible, regenerative material economy. The project focuses on creating materials derived from biowaste and silvicultural practices, ensuring the preservation of endangered indigenous and vernacular techniques through the integration of emerging biosciences. By utilizing biomaterials sourced from agricultural waste and forest byproducts, the initiative incorporates fabrication methods recognized by UNESCO as ‘intangible cultural heritage of humanity,’ which are currently at risk. The structural, mechanical, and environmental properties of these materials are enhanced through advanced CAD-CAM fabrication, along with energy-efficient biochemical and bacterial processes that promote healthy indigo coloration. Furthermore, the integration of AI technologies in species selection facilitates a novel partnership model, enabling designers to collaborate effectively with forest managers and silviculture practitioners. This collaborative approach not only optimizes the use of plant-based materials but also enhances biodiversity and climate resilience in regional ecosystems. Overall, this project embodies a holistic strategy for addressing environmental challenges while revitalizing traditional practices and fostering sustainable innovation.Keywords: material, architecture, culture, heritage, ecology, environment
Procedia PDF Downloads 91898 Synthesis of Nanoparticles and Thin Film of Cu₂ZnSnS₄ by Hydrothermal Method and Its Application as Congo Red Photocatalyst
Authors: Paula Salazar, Rodrigo Henríquez, Pablo Zerega
Abstract:
The textile, food and pharmaceutical industries are expanding daily worldwide, and they are located within the most polluting industries due to the fact that wastewater is discharged into watercourses with high concentrations of dyes and traces of drugs. Many of these compounds are stable to light and biodegradation, being considered as emerging organic contaminants. Advanced oxidation processes (AOPs) emerge as an effective alternative for the removal and elimination of this type of contaminants. Heterogeneous photocatalysis has been extensively studied as it is an efficient, low-cost and durable method. As the main photocatalyst, TiO₂ has been used for the degradation of a large number of dyes and drugs. The disadvantage of TiO₂ is its absorption in the UV region of the solar spectrum. On the other hand, quaternary chalcogenides based on Cu₂SnZnX₄ (X = S, Se) are a possible alternative due to their narrow bandgap (ca. between 0.8 to 1.5 eV depending on the phase considered), low cost, an abundance of its constituent elements in the earth's crust and its low toxicity. The objective of this research was to synthesize Cu₂SnZnS₄ (CZTS) through of a low-cost hydrothermal method and evaluate it as a potential photo-catalyst in the photo-degradation process of Congo Red. The synthesis of the nanoparticle in suspension and film onto fluorine-doped tin oxide coated glass (FTO) was carried out using a mixture of: 2 mmol CuCl₂, 1 mmol ZnCl₂, 1 mmol SnCl₂ and 4 mmol CH4N₂S in a Teflon reactor at 180⁰C for 72 h. Characterization was performed through scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV VIS spectroscopy. Photo-degradation monitoring was carried out employing a UV VIS spectrophotometer. The results show that photodegradation of 55% of the dye can be obtained after 4h of exposure to polychromatic light, it should be noted that the Congo Red dye is being studied for the first time.Keywords: CZTS, hydrothermal, photocatalysis, dye
Procedia PDF Downloads 1191897 Analysis of Environmental Activism in High Schools in District Peshawar
Authors: Hafiz M. Inamullah, Altaf Ullah
Abstract:
Environmental degradation is a serious issue that has adverse impacts on the human population locally, regionally, and globally. There is a dire need to adopt an environmentally friendly lifestyle to minimize further environmental degradation. One of the mediums through which environmentally friendly attitudes and behavior may be inculcated is through school education. The purpose of this study was to investigate environmental activities organized in High Schools of District Peshawar. The population for this study was comprised of 77 Headmasters of the High Schools in District Peshawar. A sample of 65 Headmasters was selected randomly from the above-mentioned population. One questionnaire was developed from the relevant literature for the Headmasters and was self-administered by the researcher. The collected data was entered into Excel and was analyzed and interpreted through SPSS 20 using the frequencies and percentages, and the Chi-square test was applied. The results indicated that most high schools had never organized environmental activities for secondary-level students. It was suggested that the high schools might organize various environmental activities such as plantations, park visits, debate competitions, environmental clubs, and drawing competitions.Keywords: proinvirmenlaism, Khyber Pakhtunkhwa, secondary level, Peshawar
Procedia PDF Downloads 851896 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis
Procedia PDF Downloads 2941895 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1461894 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation
Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes
Abstract:
Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor
Procedia PDF Downloads 1351893 A Distinct Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Quantification of Evogliptin Tartrate and Metformin HCl in Pharmaceutical Dosage Forms
Authors: Rajeshkumar Kanubhai Patel, Neha Sudhirkumar Mochi
Abstract:
A simple and accurate stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous quantitation of Evogliptin tartrate and Metformin HCl in pharmaceutical dosage forms, following ICH guidelines. Forced degradation was performed under various stress conditions including acid, base, oxidation, thermal, and photodegradation. The method utilized an Eclipse C18 column (250 mm × 4.6 mm, 5 µm) with a mobile phase of 5 mM 1-hexane sulfonic acid sodium salt in water and 0.2% v/v TEA (45:55 %v/v), adjusted to pH 3.0 with OPA, at a flow rate of 1.0 mL/min. Detection at 254.4 nm using a PDA detector showed good resolution of degradation products and both drugs. Linearity was observed within 1-5 µg/mL for Evogliptin tartrate and 100-500 µg/mL for Metformin HCl, with % recovery between 99-100% and precision within acceptable limits (%RSD < 2%). The method proved to be specific, precise, accurate, and robust for routine analysis of these drugs.Keywords: stability indicating RP-HPLC, evogliptin tartrate, metformin HCl, validation
Procedia PDF Downloads 221892 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 421891 Influence of Settlements and Human Activities on Beetle Diversity and Assemblage Structure at Small Islands of the Kepulauan Seribu Marine National Park and Nearby Java
Authors: Shinta Holdsworth, Jan Axmacher, Darren J. Mann
Abstract:
Beetles represent the most diverse insect taxon, and they contribute significantly to a wide range of vital ecological functions. Examples include decomposition by bark beetles, nitrogen recycling and dung processing by dung beetles or pest control by predatory ground beetles. Nonetheless, research into the distribution patterns, species richness and functional diversity of beetles particularly from tropical regions remains extremely limited. In our research, we aim to investigate the distribution and diversity patterns of beetles and the roles they play in small tropical island ecosystems in the Kepulauan Seribu Marine National Park and on Java. Our research furthermore provides insights into the effects anthropogenic activities have on the assemblage composition and diversity of beetles on the small islands. We recorded a substantial number of highly abundant small island species, including a substantial number of unique small island species across the study area, highlighting these islands’ potential importance for the regional conservation of genetic resources. The highly varied patterns observed in relation to the use of different trapping types - pitfall traps and flight interception traps (FITs) - underscores the need for complementary trapping strategies that combine multiple methods for beetle community surveys in tropical islands. The significant impacts of human activities have on the small island beetle faunas were also highlighted in our research. More island beetle species encountered in settlement than forest areas shows clear trend of positive links between anthropogenic activities and the overall beetle species richness. However, undisturbed forests harboured a high number of unique species, also in comparison to disturbed forests. Finally, our study suggests that, with regards to different feeding guilds, the diversity of herbivorous beetles on islands is strongly affected by the different levels of forest cover encountered.Keywords: beetle diversity, forest disturbance, island biogeography, island settlement
Procedia PDF Downloads 2181890 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant
Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante
Abstract:
The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.Keywords: AOPs, decontamination, estrogens, radicals, wastewater
Procedia PDF Downloads 1891889 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1261888 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 1201887 Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed
Authors: Zaenal Mutaqin
Abstract:
The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed.Keywords: conservation, erosion, SWAT analysis, watersheed
Procedia PDF Downloads 2901886 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics
Authors: Siddique Ullah Baig, Alisha Manzoor
Abstract:
The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.Keywords: Broghil National Park, natural resources, environmental degradation, land cover
Procedia PDF Downloads 641885 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams
Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar
Abstract:
A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete
Procedia PDF Downloads 1561884 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion
Authors: Ouahiba Bechiri, Mostefa Abbessi
Abstract:
The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide
Procedia PDF Downloads 3581883 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance
Authors: Mina Naeini, Thomas A. Adams II
Abstract:
Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs
Procedia PDF Downloads 1281882 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests
Authors: Mohamed Khiatine, Ramdane Bahar
Abstract:
The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.
Procedia PDF Downloads 1041881 The Impact of Climate Change on Typical Material Degradation Criteria over Timurid Historical Heritage
Authors: Hamed Hedayatnia, Nathan Van Den Bossche
Abstract:
Understanding the ways in which climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the conservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like freeze-thaw cycles and wind erosion is also a key parameter when considering mitigating actions. Due to the vulnerability of cultural heritage to climate change, the impact of this phenomenon on material degradation criteria with the focus on brick masonry walls in Timurid heritage, located in Iran, was studied. The Timurids were the final great dynasty to emerge from the Central Asian steppe. Through their patronage, the eastern Islamic world in northwestern of Iran, especially in Mashhad and Herat, became a prominent cultural center. Goharshad Mosque is a mosque in Mashhad of the Razavi Khorasan Province, Iran. It was built by order of Empress Goharshad, the wife of Shah Rukh of the Timurid dynasty in 1418 CE. Choosing an appropriate regional climate model was the first step. The outputs of two different climate model: the 'ALARO-0' and 'REMO,' were analyzed to find out which model is more adopted to the area. For validating the quality of the models, a comparison between model data and observations was done in 4 different climate zones in Iran for a period of 30 years. The impacts of the projected climate change were evaluated until 2100. To determine the material specification of Timurid bricks, standard brick samples from a Timurid mosque were studied. Determination of water absorption coefficient, defining the diffusion properties and determination of real density, and total porosity tests were performed to characterize the specifications of brick masonry walls, which is needed for running HAM-simulations. Results from the analysis showed that the threatening factors in each climate zone are almost different, but the most effective factor around Iran is the extreme temperature increase and erosion. In the north-western region of Iran, one of the key factors is wind erosion. In the north, rainfall erosion and mold growth risk are the key factors. In the north-eastern part, in which our case study is located, the important parameter is wind erosion.Keywords: brick, climate change, degradation criteria, heritage, Timurid period
Procedia PDF Downloads 1181880 Testing of Small Local Zones by Means of Small Punch Test at Room and Creep Temperatures
Authors: Vaclav Mentl, Josef Volak
Abstract:
In many industrial applications, materials are subjected to degradation of mechanical properties as a result of real service conditions, temperature, cyclic loading, humidity or other corrosive media, irradiation, their combination etc. The assessment of the remaining lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonably precise assessment of the current damage extent of materials in question and the remaining lifetime evaluation of the component under consideration. The answers to demands of customers to extend the lifetime of existing components beyond their original design life must be based on detailed assessment of the current degradation extent, what can be rarely realised by means of traditional mechanical (standardised) tests that need relatively large volumes of representative material for the test specimen manufacturing. This fact accelerated the research of miniaturised test specimen that can be sampled non-invasively from the component.Keywords: small punch test, correlation, creep, mechanical properties
Procedia PDF Downloads 2741879 Degradation of EE2 by Different Consortium of Enriched Nitrifying Activated Sludge
Authors: Pantip Kayee
Abstract:
17α-ethinylestradiol (EE2) is a recalcitrant micropollutant which is found in small amounts in municipal wastewater. But these small amounts still adversely affect for the reproductive function of aquatic organisms. Evidence in the past suggested that full-scale WWTPs equipped with nitrification process enhanced the removal of EE2 in the municipal wastewater. EE2 has been proven to be able to be transformed by ammonia oxidizing bacteria (AOB) via co-metabolism. This research aims to clarify the EE2 degradation pattern by different consortium of ammonia oxidizing microorganism (AOM) including AOA (ammonia oxidizing archaea) and investigate contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM. The result showed that AOA or AOB of N. oligotropha cluster in enriched nitrifying activated sludge (NAS) from 2mM and 5mM, commonly found in municipal WWTPs, could degrade EE2 in wastewater via co-metabolism. Moreover, the investigation of the contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM demonstrated that the new synthesized AMO enzyme may perform ammonia oxidation rather than the existing AMO enzyme or the existing AMO enzyme may has a small amount to oxidize ammonia.Keywords: 17α-ethinylestradiol, nitrification, ammonia oxidizing bacteria, ammonia oxidizing archaea
Procedia PDF Downloads 2911878 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1271877 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm
Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria
Abstract:
The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp
Procedia PDF Downloads 1441876 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers
Authors: R. M. S. Sachini Amararathne
Abstract:
This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer
Procedia PDF Downloads 94