Search results for: estimating of trajectory
422 Assessing the Resilience of the Insurance Industry under Solvency II
Authors: Vincenzo Russo, Rosella Giacometti
Abstract:
The paper aims to assess the insurance industry's resilience under Solvency II against adverse scenarios. Starting from the economic balance sheet available under Solvency II for insurance and reinsurance undertakings, we assume that assets and liabilities follow a bivariate geometric Brownian motion (GBM). Then, using the results available under Margrabe's formula, we establish an analytical solution to calibrate the volatility of the asset-liability ratio. In such a way, we can estimate the probability of default and the probability of breaching the undertaking's Solvency Capital Requirement (SCR). Furthermore, since estimating the volatility of the Solvency Ratio became crucial for insurers in light of the financial crises featured in the last decades, we introduce a novel measure that we call Resiliency Ratio. The Resiliency Ratio can be used, in addition to the Solvency Ratio, to evaluate the insurance industry's resilience in case of adverse scenarios. Finally, we introduce a simplified stress test tool to evaluate the economic balance sheet under stressed conditions. The model we propose is featured by analytical tractability and fast calibration procedure where only the disclosed data available under the Solvency II public reporting are needed for the calibration. Using the data published regularly by the European Insurance and Occupational Pensions Authority (EIOPA) in an aggregated form by country, an empirical analysis has been performed to calibrate the model and provide the related results at the country level.Keywords: Solvency II, solvency ratio, volatility of the asset-liability ratio, probability of default, probability to breach the SCR, resilience ratio, stress test
Procedia PDF Downloads 81421 Process Monitoring Based on Parameterless Self-Organizing Map
Authors: Young Jae Choung, Seoung Bum Kim
Abstract:
Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property
Procedia PDF Downloads 275420 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration
Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan
Abstract:
The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning
Procedia PDF Downloads 35419 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 288418 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions
Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet
Abstract:
Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera
Procedia PDF Downloads 143417 Insight into the Visual Attentional Correlates Underpinning Autistic-Like Traits in Fragile X and Down Syndrome
Authors: Jennifer M. Glennon, Hana D'Souza, Luke Mason, Annette Karmiloff-Smith, Michael S. C. Thomas
Abstract:
Genetic syndrome groups that feature high rates of autism comorbidity, like Down syndrome (DS) and fragile X syndrome (FXS), have been presented as useful models for understanding risk and protective factors involved in the emergence of autistic traits. Yet despite reaching clinical thresholds, these ‘syndromic’ forms of autism appear to differ in important ways from the idiopathic or ‘non-syndromic’ autism phenotype. To uncover the true nature of these comorbidities, it is necessary to extend definitions of autism to include the cognitive characteristics of the disorder and to then apply this broadened conceptualisation to the study of syndromic autism profiles. The current study employs a variety of well-established eye-tracking paradigms to assess visual attentional performance in children with DS and FXS who reach thresholds for autism on the Social Communication Questionnaire. It investigates whether autism profiles in these children are accompanied by visual orienting difficulties (‘sticky attention’), decreased social attention, and enhanced visual search performance, all of which are characteristic of the idiopathic autism phenotype. Data is collected from children with DS and FXS aged between 6 and 10 years, in addition to two control groups matched on age and intellectual ability (i.e., children with idiopathic autism and neurotypical controls). Cross-sectional developmental trajectory analyses are conducted to enable visuo-attentional profile comparisons. Significant differences in the visuo-attentional processes underpinning autism presentations in children with FXS and DS are hypothesised, supporting notions of syndrome specificity. The study provides insight into the complex heterogeneity associated with syndromic autism presentations and autism per se, with clinical implications for the utility of autism intervention programmes in DS and FXS populations.Keywords: autism, down syndrome, fragile X syndrome, eye tracking
Procedia PDF Downloads 239416 Investigating the Role of Algerian Middle School Teachers in Enhancing Academic Self-Regulation: A Key towards Teaching How to Learn
Authors: Houda Zouar, Hanane Sarnou
Abstract:
In the 21st, century the concept of learners' autonomy is crucial. The concept of self-regulated learning has come forward as a result of enabling learners to direct their learning with autonomy towards academic goals achievement. Academic self-regulation is defined as the process by which learners systematically plan, monitor and asses their learning to achieve their academic established goals. In the field of English as a foreign language, teachers emphasise the role of learners’ autonomy to foster the process of English language learning. Consequently, academic self-regulation is considered as a vehicle to enhance autonomy among English language learners. However, not all learners can be equally self-regulators if not well assisted, mainly those novice pupils of basic education. For this matter, understanding the role of teachers in fostering academic self- regulation must be among the preliminary objectives in searching and developing this area. The present research work targets the role of the Algerian middle school teachers in enhancing academic self-regulation and teaching pupils how to learn, besides their role as models in the trajectory of teaching their pupils to become self-regulators. Despite the considerable endeavours in the field of educational setting on Self-Regulated Learning, the literature of the Algerian context indicates confined endeavours to undertake and divulge this notion. To go deeper into this study, a mixed method approach was employed to confirm our hypothesis. For data collection, teachers were observed and addressed by a questionnaire on their role in enhancing academic self- regulation among their pupils. The result of the research indicates that the attempts of middle school Algerian teachers are implicit and limited. This study emphasises the need to prepare English language teachers with the necessary skills to promote autonomous and self-regulator English learners.Keywords: Algeria, English as a foreign language, middle school, self-regulation, Teachers' role
Procedia PDF Downloads 147415 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems
Authors: Akshay S. Dalvi, Hazim El-Mounayri
Abstract:
The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.Keywords: district cooling plant, energy systems, framework, MBSE
Procedia PDF Downloads 130414 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 205413 Impact of Development Induced Displaced on Tribal Indigenous Women of North East India
Authors: Bitopi Dutta
Abstract:
Forced Displacement of marginalised groups has been widely debated whole across the world, including India. This paper will do a gender analysis of Development Induced Displacement(DID) in tribal indigenous societies of North East India (NEI), a region that is frequently quoted as a relatively gender equal society as compared to the other parts of India. The central argument of the paper concerns how patriarchies in the discourses of the state and societies work together in shaping a particular gendered experience for women (and men) - in this context a violent gendered transformation in displaced indigenous communities. The primary analysis of the paper will be centered on the acquisition of Common Property Resources (CPRs) under the Land Law of India which has devastating consequences for the tribal women since CPRs forms the basis of their high status, identity and autonomy. Tracing the trajectory of DID in the NEI since 1947 to 2010, this paper will locate the violent gendered transition that these tribal societies have undergone during this period vis.a.vis their tradition which was grounded on a far more gender equal worldview. The paper will place this argument in terms of the lost status and impoverishment of tribal women in the social and economic domain reflected in terms of loss of property and land ownership rights, monetisation of the tribal economy under the sole custody of the men, forced internalisation of this reduced status by the women themselves and so on. DID in this sense will not only be understood as only physical displacement, but also as social and cultural displacement. Interviews of people displaced/affected by the development projects will be the primary mode of data collection which will be supplemented with documentary research using Government Data, and local archives of the region.Keywords: common property resources, displacement, north east India, tribal, women
Procedia PDF Downloads 173412 Introducing New and Less Known Sources of Geomorphosites for Geotourism Development, with Examples from Misho-dagh Mountain in Northwestern Iran
Authors: Davoud Mokhtari
Abstract:
One of the factors behind the increasing development of geotourism is the identification and introduction of new facets of amazing geosphere phenomena. The Misho-Dagh Mountains in northwestern Iran are one of the rich geodiversity areas. The presence of some rare and interesting phenomena in this mountain has increased the potential of this region for geotourism development. Active pressure ridges, arcuate valleys, sag Ponds, granite complexes, glacial rock springs, and displaced habitats due to tectonic activity are among the most significant phenomena in the study area. The research is based on the literature review of geotourism and personal research experiences on geomorphosites of the northwest of Iran. Monitoring the changes of geomorphosites and evaluation of corresponding changes in the geomorphosite̕s location and their capabilities using satellite images and fieldwork is done. In this study, six geomorphosite were introduced, each with special characteristics and with one of the geotourism topics. Selection of this location of northwestern Iran is due to the focus of author of this paper is on this part of the country, and there is no doubt that such places, even with higher values of geotourism, there are in various parts of Iran and the world that could be interested in this field of emerging science. From in situ observations taken in the field and estimating a level of impact, employing assessment techniques, and then finally extrapolating the resultant factors across all case studies, we have been able to generate a geotourism map for future planning purposes. Accordingly, it should be noted that we are not just part of the landscape of the geomorphosites. The geomorphosites are also part of our landscape. It is hoped that the findings of this paper can open a new world of geotourism that, if is not associated with geomorphological processes, will be very short.Keywords: geotourism, sources of geotourism, geotouristic areas, mishow_dagh, northwest of Iran
Procedia PDF Downloads 93411 Development and Evaluation of Virtual Basketball Game Using Motion Capture Technology
Authors: Shunsuke Aoki, Taku Ri, Tatsuya Yamazaki
Abstract:
These days, along with the development of e-sports, video games as a competitive sport is attracting attention. But, in many cases, action in the screen does not match the real motion of operation. Inclusiveness of player motion is needed to increase reality and excitement for sports games. Therefore, in this study, the authors propose a method to recognize player motion by using the motion capture technology and develop a virtual basketball game. The virtual basketball game consists of a screen with nine targets, players, depth sensors, and no ball. The players pretend a two-handed basketball shot without a ball aiming at one of the nine targets on the screen. Time-series data of three-dimensional coordinates of player joints are captured by the depth sensor. 20 joints data are measured for each player to estimate the shooting motion in real-time. The trajectory of the thrown virtual ball is calculated based on the time-series data and hitting on the target is judged as success or failure. The virtual basketball game can be played by 2 to 4 players as a competitive game among the players. The developed game was exhibited to the public for evaluation on the authors' university open campus days. 339 visitors participated in the exhibition and enjoyed the virtual basketball game over the two days. A questionnaire survey on the developed game was conducted for the visitors who experienced the game. As a result of the survey, about 97.3% of the players found the game interesting regardless of whether they had experienced actual basketball before or not. In addition, it is found that women are easy to comfort for shooting motion. The virtual game with motion capture technology has the potential to become a universal entertainment between e-sports and actual sports.Keywords: basketball, motion capture, questionnaire survey, video ga
Procedia PDF Downloads 126410 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation
Authors: Ekin Nurbaş
Abstract:
One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing
Procedia PDF Downloads 147409 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis
Authors: Kawsar Ahmed, Hong Wang
Abstract:
The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation
Procedia PDF Downloads 112408 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia PDF Downloads 205407 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir
Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede
Abstract:
Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution
Procedia PDF Downloads 135406 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members
Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim
Abstract:
In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length
Procedia PDF Downloads 295405 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region
Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio
Abstract:
The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker
Procedia PDF Downloads 528404 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions
Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco
Abstract:
Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions
Procedia PDF Downloads 278403 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection
Procedia PDF Downloads 135402 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate
Authors: Ambalika Ekka
Abstract:
In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43 MJ.Keywords: energy efficient, embodied energy, EPI, building materials
Procedia PDF Downloads 196401 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto
Abstract:
Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.Keywords: frontal lobe, functional near-infrared spectroscopy, state-trait anxiety inventory score, stress
Procedia PDF Downloads 250400 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography
Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz
Abstract:
Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic
Procedia PDF Downloads 107399 Energy Consumption and Economic Growth Nexus: a Sustainability Understanding from the BRICS Economies
Authors: Smart E. Amanfo
Abstract:
Although the exact functional relationship between energy consumption and economic growth and development remains a complex social science, there is a sustained growing of agreement among energy economists and the likes on direct or indirect role of energy use in the development process, and as sustenance for many of societal achieved socio-economic and environmental developments in any economy. According to OECD, the world economy will double by 2050 in which the two members of BRICS (Brazil, Russia, India, China and South Africa) countries: China and India lead. There is a global apprehension that if countries constituting the epicenter of the present and future economic growth follow the same trajectory as during and after Industrial Revolution, involving higher energy throughputs, especially fossil fuels, the already known and models predicted threats of climate change and global warming could be exacerbated, especially in the developing economies. The international community’s challenge is how to address the trilemma of economic growth, social development, poverty eradication and stability of the ecological systems. This paper aims at providing the estimates of economic growth, energy consumption, and carbon dioxide emissions using BRICS members’ panel data from 1980 to 2017. The preliminary results based on fixed effect econometric model show positive significant relationship between energy consumption and economic growth. The paper further identified a strong relationship between economic growth and CO2 emissions which suggests that the global agenda of low-carbon-led growth and development is not a straight forward achievable The study therefore highlights the need for BRICS member states to intensify low-emissions-based production and consumption policies, increase renewables in order to avoid further deterioration of climate change impacts.Keywords: BRICS, sustainability, sustainable development, energy consumption, economic growth
Procedia PDF Downloads 94398 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: nanoliquid, rigid-rigid, rotation, single phase
Procedia PDF Downloads 234397 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations
Authors: Ahmed El-Banbi, Ahmed El-Maraghi
Abstract:
PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure
Procedia PDF Downloads 63396 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot
Procedia PDF Downloads 172395 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 258394 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 425393 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 271