Search results for: chemically enhanced
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3134

Search results for: chemically enhanced

2444 Production of High Purity Cellulose Products from Sawdust Waste Material

Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole

Abstract:

Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.

Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp

Procedia PDF Downloads 187
2443 DNA Nano Wires: A Charge Transfer Approach

Authors: S. Behnia, S. Fathizadeh, A. Akhshani

Abstract:

In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

Keywords: DNA conductivity, Landauer resistance, negative di erential resistance, Chaos theory, mean Lyapunov exponent

Procedia PDF Downloads 426
2442 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 137
2441 Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells

Authors: Yihenew Simegniew Birhan, Hsieh Chih Tsai

Abstract:

The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells.

Keywords: anticancer drug delivery, diselenide bond, polymeric micelles, redox-responsive

Procedia PDF Downloads 110
2440 Enhancing Communicative Skills for Students in Automatics

Authors: Adrian Florin Busu

Abstract:

The communicative approach, or communicative language teaching, used for enhancing communicative skills in students in automatics is a modern teaching approach based on the concept of learning a language through having to communicate real meaning. In the communicative approach, real communication is both the objective of learning and the means through which it takes place. This approach was initiated during the 1970’s and quickly became prominent, as it proposed an alternative to the previous systems-oriented approaches. In other words, instead of focusing on the acquisition of grammar and vocabulary, the communicative approach aims at developing students’ competence to communicate in the target language with an enhanced focus on real-life situations. To put it in an nutshell, CLT considers using the language to be just as important as actually learning the language.

Keywords: communication, approach, objective, learning

Procedia PDF Downloads 161
2439 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing

Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane

Abstract:

Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.

Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing

Procedia PDF Downloads 299
2438 The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy

Authors: M. N. Ervina Efzan, H. J. Kong, C. K. Kok

Abstract:

The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy.

Keywords: Al-Si, hybrid modifier, ladle metallurgy, hardness

Procedia PDF Downloads 396
2437 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: M. Mirmohammadi, S. Taghdisi, F. Anali

Abstract:

Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.

Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis

Procedia PDF Downloads 96
2436 On Phase Based Stereo Matching and Its Related Issues

Authors: András Rövid, Takeshi Hashimoto

Abstract:

The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.

Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD

Procedia PDF Downloads 469
2435 Production of Geopolymers for Structural Applications from Fluidized Bed Combustion Bottom Ash

Authors: Thapelo Aubrey Motsieng

Abstract:

Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed of in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.

Keywords: bottom ash, geopolymers, coal, compressive strength

Procedia PDF Downloads 323
2434 The Effect of Self-Efficacy on Emotional Intelligence and Well-Being among Tour Guides

Authors: Jennifer Chen-Hua Min

Abstract:

The concept of self-efficacy refers to people’s beliefs in their ability to perform certain behaviors and cope with environmental demands. As such, self-efficacy plays a key role in linking ability to performance. Therefore, this study examines the relationships of self-efficacy, emotional intelligence (EI), and well-being among tour guides, who act as intermediaries between tourists and an unfamiliar environment and significantly influence tourists’ impressions of a destination. Structural equation modeling (SEM) is used to identify the relationships between these factors. The results found that self-efficacy is positively associated with EI and well-being, and a positive link was seen between EI and well-being. This study has practical implications, as the results can facilitate the development of interventions for enhancing tour guides’ EI and self-efficacy competencies, which will benefit them in terms of both enhanced achievements and improved psychological happiness and well-being.

Keywords: self-efficacy, tour guides, tourism, emotional intelligence (EI)

Procedia PDF Downloads 464
2433 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 139
2432 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 54
2431 Ballistic Transport in One-Dimensional Random Dimer Photonic Crystals

Authors: Samira Cherid, Samir Bentata, F. Zahira Meghoufel, Sabria Terkhi, Yamina Sefir, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Z. Itouni

Abstract:

In this work, we examined the propagation of light in one-dimensional systems is examined by means of the random dimer model. The introduction of defect elements, randomly in the studied system, breaks down the Anderson localization and provides a set of propagating delocalized modes at the corresponding conventional dimer resonances. However, tuning suitably the defect dimer resonance on the host ones (or vice versa), the transmission magnitudes can be enhanced providing the optimized ballistic transmission regime as an average response. Hence, ballistic optical filters can be conceived at desired wavelengths.

Keywords: photonic crystals, random dimer model, ballistic resonance, localization and transmission

Procedia PDF Downloads 530
2430 Theoretical Study of Gas Adsorption in Zirconium Clusters

Authors: Rasha Al-Saedi, Anthony Meijer

Abstract:

The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.

Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry

Procedia PDF Downloads 185
2429 Reactions of 4-Aryl-1H-1,2,3-Triazoles with Cycloalkenones and Epoxides: Synthesis of 2,4- and 1,4-Disubstituted 1,2,3-Triazoles

Authors: Ujjawal Kumar Bhagat, Kamaluddin, Rama Krishna Peddinti

Abstract:

The Huisgen’s 1,3-dipolar [3+2] cycloaddition of organic azides and alkynes often give the mixtures of both the regioisomers 1,4- and 1,5- disubstituted 1,2,3-triazoles. Later, in presence of metal salts (click chemistry) such as copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was used for the synthesis of 1,4-disubstituted 1,2,3-triazoles as a sole products regioselectively. Also, the ‘click reactions’ of Ruthenium-catalyzed azides-alkynes cycloaddition (RuAAC) is used for the synthesis of 1,5-disubstituted 1,2,3-triazoles as a single isomer. The synthesis of 1,4- and 1.5-disubstituted 1,2,3-triazoles has become the gold standard of ‘click chemistry’ due to its reliability, specificity, and biocompatibility. The 1,4- and 1,5-disubstituted 1,2,3-triazoles have emerged as one of the most powerful entities in the varieties of biological properties like antibacterial, antitubercular, antitumor, antifungal and antiprotozoal activities. Some of the 1,4,5-trisubstituted 1,2,3-triazoles exhibit Hsp90 inhibiting properties. The 1,4-disubstituted 1,2,3-triazoles also play a big role in the area of material sciences. The triazole-derived oligomeric, polymeric structures are the potential materials for the preparation of organic optoelectronics, silicon elastomers and unimolecular block copolymers. By the virtue of hydrogen bonding and dipole interactions, the 1,2,3-triazole moiety readily associates with the biological targets. Since, the 4-aryl-1H-1,2,3-triazoles are stable entities, they are chemically robust and very less reactive. In this regard, the addition of 4-aryl-1H-1,2,3-triazoles as nucleophiles to α,β-unsaturated carbonyls and nucleophilic substitution with the epoxides constitutes a powerful and challenging synthetic approach for the generation of disubstituted 1,2,3-triazoles. Herein, we have developed aza-Michael addition of 4-aryl-1H-1,2,3-triazoles to 2-cycloalken-1-ones in the presence of an organic base (DABCO) in acetonotrile solvent leading to the formation of disubstituted 1,2,3-triazoles. The reaction provides 1,4-disubstituted triazoles, 3-(4-aryl-1H-1,2,3-triazol-1-yl)cycloalkanones in major amount along with 1,5-disubstituted 1,2,3-triazoles, minor regioisomers with excellent combined chemical yields (upto99%). The nucleophilic behavior of 4-aryl-1H-1,2,3-triazoles was also tested in the ring opening of meso-epoxides in the presence of organic bases (DABCO/Et3N) in acetonotrile solvent furnishing the two regioisomers1,4- and 1,5-disubstituted 1,2,3-triazoles. Thus, the novelty of this methodology is synthesis of diversified disubstituted 1,2,3-triazoles under metal free condition.The results will be presented in detail.

Keywords: aza-Michael addition, cycloalkenones, epoxides, triazoles

Procedia PDF Downloads 323
2428 The Hypoglycaemic and Antioxidant Effects of Ethanolic Extract of Curcuma Longa Rhizomes Alone and with Two Pepper Adjuvants in Alloxan-Induced Diabetic Rats

Authors: J. O. Ezekwesili-Ofili, L. I. Okorafor, S. C. Nsofor

Abstract:

Diabetes mellitus is a carbohydrate metabolism disorder due to an absolute or relative deficiency of insulin secretion, action or both. Many known hypoglycaemic drugs are known to produce serious side effects. However, the search for safer and more effective agents has shifted to plant products, including foods and spices. One of such is the rhizome of Curcuma longa or turmeric, which is a spice with high medicinal value. A drawback in the use of C. longa is the poor bioavailability of curcumin, the active ingredient. It has been reported that piperine, an alkaloid present in peppers increases the bioavailability of curcumin. This work therefore investigated the hypoglycaemic and antioxidant effects of ethanolic extract of C. longa rhizomes, alone and with two pepper adjuvants in alloxan-induced diabetic rats. A total of 48 rats were divided into 6 groups of 8 rats each. Groups A–E were induced with diabetes using 150mg/kg body weight of alloxan monohydrate, while group F was normoglycaemic: Group A: Diabetic; fed with 400 mg/g body weight of turmeric extract; group B: Diabetic, fed with 400 mg/kg b. w. and 200mg/kg b. w of ethanolic extract of seeds of Piper guinensee; group C: Diabetic, fed with 400 mg/kg b. w. and 200 mg /kg b. w. of ethanolic extract of seeds of Capsicum annum var cameroun, group D: Diabetic, treated with standard drug, glibenclamide (0.3mg/kg body weight), group E: Diabetic; no treatment i.e. Positive control and group F: non diabetic, no treatment i.e. Negative control. Blood glucose levels were monitored for 14 days using a glucometer. The levels of the antioxidant enzymes; glutathione peroxidase, catalase and superoxide dismutase were also assayed in serum. The ethanolic extracts of C. longa rhizomes at the dose given (400 mg/kg b. w) significantly reduced the blood glucose levels of the diabetic rats (p<0.05) comparable to the standard drug. Co administration of extract of the peppers did not significantly increase the efficiency of the extract, although C. annum var cameroun showed greater effect, though not significantly. The antioxidant effect of the extract was significant in diabetic rats. The use of piperine-containing peppers enhanced the antioxidant effect. Phytochemical analyses of the ethanolic extract of C. longa showed the presence of alkaloids, flavonoids, steroids, saponins, tannins, glycosides, and terpenoids. These results suggest that the ethanolic extract of C. longa had antidiabetic with antioxidant effects and could thus be of benefit in the treatment and management of diabetes as well as ameliorate pro-oxidant effects that may lead to diabetic complications. However, while the addition of piperine did not affect the antidiabetic effect of C. longa, the antioxidant effect was greatly enhanced.

Keywords: antioxidant, Curcuma longa rhizome, hypoglycaemic, pepper adjuvants, piperine

Procedia PDF Downloads 237
2427 Preserving Privacy in Workflow Delegation Models

Authors: Noha Nagy, Hoda Mokhtar, Mohamed El Sherkawi

Abstract:

The popularity of workflow delegation models and the increasing number of workflow provenance-aware systems motivate the need for finding more strict delegation models. Such models combine different approaches for enhanced security and respecting workflow privacy. Although modern enterprises seek conformance to workflow constraints to ensure correctness of their work, these constraints pose a threat to security, because these constraints can be good seeds for attacking privacy even in secure models. This paper introduces a comprehensive Workflow Delegation Model (WFDM) that utilizes provenance and workflow constraints to prevent malicious delegate from attacking workflow privacy as well as extending the delegation functionalities. In addition, we argue the need for exploiting workflow constraints to improve workflow security models.

Keywords: workflow delegation models, secure workflow, workflow privacy, workflow provenance

Procedia PDF Downloads 332
2426 Using Chatbots to Create Situational Content for Coursework

Authors: B. Bricklin Zeff

Abstract:

This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.

Keywords: chatbot, nursing, pragmatics, role-play, AI

Procedia PDF Downloads 66
2425 Sleep Scheduling Schemes Integrating Relay Node and User Equipment in LTE-A

Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Hsieh-Hua Liu

Abstract:

By introduction of Relay Nodes (RNs), LTE-Advanced can provide enhanced coverage and capacity at cell edges and hot-spot areas. The authors have been researching the issue of power saving in mobile communications technology such as WiMax and LTE for some years. Based on the idea of Load-Based Power Saving (LBPS), three efficient power saving schemes for the user equipment (UE) were proposed in the authors’ previous work. In this paper, three revised schemes of the previous work in order to integrate RN and UE in power saving are proposed. Simulation study shows the proposed schemes can achieve significantly better power saving efficiency than the standard based scheme at the cost of moderately increased delay.

Keywords: DRX, LTE-A, power saving, RN

Procedia PDF Downloads 525
2424 Importance of Internship in Technical Education

Authors: R. Vishalakshi, P. Chaithra, M. Dakshayini

Abstract:

An engineering degree is not a ticket that automatically provides a job. The competition for good jobs is going steep as the global economy and outsourcing is increasing. It is not sufficient to be simply more qualified. In this competitive world, it is important to stand out from everyone else. Going to college and getting a degree is the foremost important step. At the same time, students should be competent enough to face this technically growing and challenging world. So the classroom learning can be greatly enhanced by working with real-time applications. In this paper, we discuss how it can be realized by getting internships with the companies, where students actually get an opportunity to work in real work environment with live problems along with co-workers. Also presents case studies of how the practical industry work experience helps them in constructing their future carrier path.

Keywords: real work environment, industry work experience, internship, college students

Procedia PDF Downloads 449
2423 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 85
2422 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
2421 The Relevance of Smart Technologies in Learning

Authors: Rachael Olubukola Afolabi

Abstract:

Immersive technologies known as X Reality or Cross Reality that include virtual reality augmented reality, and mixed reality have pervaded into the education system at different levels from elementary school to adult learning. Instructors, instructional designers, and learning experience specialists continue to find new ways to engage students in the learning process using technology. While the progression of web technologies has enhanced digital learning experiences, analytics on learning outcomes continue to be explored to determine the relevance of these technologies in learning. Digital learning has evolved from web 1.0 (static) to 4.0 (dynamic and interactive), and this evolution of technologies has also advanced teaching methods and approaches. This paper explores how these technologies are being utilized in learning and the results that educators and learners have identified as effective learning opportunities and approaches.

Keywords: immersive technologoes, virtual reality, augmented reality, technology in learning

Procedia PDF Downloads 145
2420 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 379
2419 Cognitive Performance Post Stroke Is Affected by the Timing of Evaluation

Authors: Ayelet Hersch, Corrine Serfaty, Sigal Portnoy

Abstract:

Stroke survivors commonly report persistent fatigue and sleep disruptions during rehabilitation and post-recovery. While limited research has explored the impact of stroke on a patient's chronotype, there is a gap in understanding the differences in cognitive performance based on treatment timing. Study objectives: (a) To characterize the sleep chronotype in sub-acute post-stroke individuals. (b) Explore cognitive task performance differences during preferred and non-preferred hours. (c) Examine the relationships between sleep quality and cognitive performance. For this intra-subject study, twenty participants (mean age 60.2±8.6) post-first stroke (6-12 weeks post stroke) underwent assessments at preferred and non-preferred chronotypic times. The assessment included demographic surveys, the Munich Chronotype Questionnaire, Montreal Cognitive Assessment (MoCA), Rivermead Behavioral Memory Test (RBMT), a fatigue questionnaire, and 4-5 days of actigraphy (wrist-worn wGT3X-BT, ActiGraph) to record sleep characteristics. Four sleep quality indices were extracted from actigraphy wristwatch recordings: The average of total sleep time per day (minutes), the average number of awakenings during the sleep period per day, the efficiency of sleep (total hours of sleep per day divided by hours spent in bed per day, averaged across the days and presented as percentage), and the Wake after Sleep Onset (WASO) index, indicating the average number of minutes elapsed from the onset of sleep to the first awakening. Stroke survivors exhibited an earlier sleep chronotype post-injury compared to pre-injury. Enhanced attention, as indicated by higher RBMT scores, occurred during preferred hours. Specifically, 30% of the study participants demonstrated an elevation in their final scores during their preferred hours, transitioning from the category of "mild memory impairment" to "normal memory." However, no significant differences emerged in executive functions, attention tasks, and MoCA scores between preferred and non-preferred hours. The Wake After Sleep Onset (WASO) index correlated with MoCA/RBMT scores during preferred hours (r=0.53/0.51, p=0.021/0.027, respectively). The number of awakenings correlated with MoCA letter task performance during non-preferred hours (r=0.45, p=0.044). Enhanced attention during preferred hours suggests a potential relationship between chronotype and cognitive performance, highlighting the importance of personalized rehabilitation strategies in stroke care. Further exploration of these relationships could contribute to optimizing the timing of cognitive interventions for stroke survivors.

Keywords: sleep chronotype, chronobiology, circadian rhythm, rehabilitation timing

Procedia PDF Downloads 65
2418 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 164
2417 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications

Authors: Fawad Ali, Mohammad Albakri

Abstract:

The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.

Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization

Procedia PDF Downloads 21
2416 Increasing the Dialogue in Workplaces Enhances the Age-Friendly Organisational Culture and Helps Employees Face Work-Related Dilemmas

Authors: Heli Makkonen, Eini Hyppönen

Abstract:

The ageing of employees, the availability of workforce, and employees’ engagement in work are today’s challenges in the field of health care and social services, and particularly in the care of older people. Therefore, it is important to enhance both the attractiveness of the work in the field of older people’s care and the retention of employees in the field, and also to pay attention to the length of careers. The length of careers can be affected, for example, by developing an age-friendly organisational culture. Changing the organisational culture in a workplace is, however, a slow process which requires engagement from employees and enhanced dialogue between employees. This article presents an example of age-friendly organisational culture in an older people’s care unit and presents the results of the development of this organisational culture to meet the identified development challenges. In this research-based development process, cycles used in action research were applied. Three workshops were arranged for employees in a service home for older people. The workshops worked as interventions, and the employees and their manager were given several consecutive assignments to be completed between them. In addition to workshops, the employees benchmarked two other service homes. In the workshops, data was collected by observing and documenting the conversations. After that, thematic analysis was used to identify the factors connected to an age-friendly organisational culture. By analysing the data and comparing it to previous studies, some dilemmas we recognised that were hindering or enhancing the attractiveness of work and the retention of employees in this nursing home. After each intervention, the process was reflected and evaluated, and the next steps were planned. The areas of development identified in the study were related to, for example, the flexibility of work, holistic ergonomics, the physical environment at the workplace, and the workplace culture. Some of the areas of development were taken over by the work community and carried out in cooperation with e.g. occupational health care. We encouraged the work community, and the employees provided us with information about their progress. In this research project, the focus was on the development of the workplace culture and, in particular, on the development of the culture of interaction. The workshops showed employees’ attitudes and strong opinions, which can be a challenge from the point of view of the attractiveness of work and the retention of employees in the field. On the other hand, the data revealed that the work community has an interest in developing the dialogue in the work community. Enhancing the dialogue gave the employees the opportunity and resources to face even challenging dilemmas related to the attractiveness of work and the retention of employees in the field. The psychological safety was also enhanced at the same time. The results of this study are part of a broader study that aims at building a model for extending older employees’ careers.

Keywords: age-friendliness, attractiveness of work, dialogue, older people, organisational culture, workplace culture

Procedia PDF Downloads 78
2415 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 513