Search results for: automatic recognition of speech
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3071

Search results for: automatic recognition of speech

2381 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 275
2380 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study

Authors: Sitong. Chen, Bing Wei

Abstract:

As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.

Keywords: high school students, identity formation, learning experiences, living experiences, science identity

Procedia PDF Downloads 58
2379 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 136
2378 Automation of Student Attendance Management System Using BPM

Authors: Kh. Alaa, Sh. Sarah, J. Khowlah, S. Liyakathunsia

Abstract:

Education has become very important nowadays and with the rapidly increasing number of student, taking the attendance manually is getting very difficult and time wasting. In order to solve this problem, an automated solution is required. An effective automated system can be implemented to manage student attendance in different ways. This research will discuss a unique class attendance system which integrates both Face Recognition and RFID technique. This system focuses on reducing the time spent on submitting of the lecture and the wastage of time on submitting and getting approval for the absence excuse and sick leaves. As a result, the suggested solution will enhance not only the time, also it will also be helpful in eliminating fake attendance.

Keywords: attendance system, face recognition, RFID, process model, cost, time

Procedia PDF Downloads 375
2377 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 270
2376 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 207
2375 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 335
2374 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 42
2373 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
2372 International Financial Reporting Standards and the Quality of Banks Financial Statement Information: Evidence from an Emerging Market-Nigeria

Authors: Ugbede Onalo, Mohd Lizam, Ahmad Kaseri, Otache Innocent

Abstract:

Giving the paucity of studies on IFRS adoption and quality of banks accounting quality, particularly in emerging economies, this study is motivated to investigate whether the Nigeria decision to adopt IFRS beginning from 1 January 2012 is associated with high quality accounting measures. Consistent with prior literatures, this study measure quality of financial statement information using earnings measurement, timeliness of loss recognition and value relevance. A total of twenty Nigeria banks covering a period of six years (2008-2013) divided equally into three years each (2008, 2009, 2010) pre adoption period and (2011, 2012, 2013) post adoption period were investigated. Following prior studies eight models were in all employed to investigate earnings management, timeliness of loss recognition and value relevance of Nigeria bank accounting quality for the different reporting regimes. Results suggest that IFRS adoption is associated with minimal earnings management, timely recognition of losses and high value relevance of accounting information. Summarily, IFRS adoption engenders higher quality of banks financial statement information compared to local GAAP. Hence, this study recommends the global adoption of IFRS and that Nigeria banks should embrace good corporate governance practices.

Keywords: IFRS, SAS, quality of accounting information, earnings measurement, discretionary accruals, non-discretionary accruals, total accruals, Jones model, timeliness of loss recognition, value relevance

Procedia PDF Downloads 465
2371 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method

Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit

Abstract:

The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.

Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS

Procedia PDF Downloads 68
2370 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
2369 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 66
2368 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
2367 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development

Procedia PDF Downloads 244
2366 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images

Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek

Abstract:

Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.

Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection

Procedia PDF Downloads 330
2365 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 356
2364 Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria

Authors: B. G. Ayantunji, B. Musa, H. Mai-Unguwa, L. A. Sunmonu, A. S. Adewumi, L. Sa'ad, A. Kado

Abstract:

For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature.

Keywords: refractivity, UHF (ultra high frequency) signal strength, free space, automatic weather station

Procedia PDF Downloads 197
2363 Sociolinguistics and Language Change

Authors: Banazzouz Halima

Abstract:

Throughout the ages, language has been viewed not only as a simple code of communicating information but rather as the most powerful and versatile medium of maintaining relationships with other people. While,by the end of the 18th century, such matters of scientific investigation concerning the study of human language began to occur under the scope of “Linguistics” generally defined as the scientific study of language. Linguistics, thus, provides a growing body of scientific knowledge about language which can guide the activity of the language teacher and student as well. Moreover,as times passed, the linguistic development engaged language in a broadly practiced academic discipline having relationship with other sciences such as: psychology, sociology, anthropology etc. Therefore, “Sociolinguistics” was given birth during the 1960’s. In fact, the given abstract is mainly linguistic, inserted under the scope of “Sociolinguistics” and by far it highlights on the process of linguistic variation and language change to show that all languages change through time and linguistic systems may vary from one speech community to another providing there is a sense of vitality where people of different parts of the globe may mutually and intelligibly communicate and comprehend each other.

Keywords: language change-sociolinguistics, social context-speech community, vitality of language, linguistic variation, urban dialectology, urban dialectology

Procedia PDF Downloads 628
2362 Semi-Automatic Method to Assist Expert for Association Rules Validation

Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen

Abstract:

In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.

Keywords: association rules, rule-based classification, classification quality, validation

Procedia PDF Downloads 439
2361 Mistranslation in Cross Cultural Communication: A Discourse Analysis on Former President Bush’s Speech in 2001

Authors: Lowai Abed

Abstract:

The differences in languages play a big role in cross-cultural communication. If meanings are not translated accurately, the risk can be crucial not only on an interpersonal level, but also on the international and political levels. The use of metaphorical language by politicians can cause great confusion, often leading to statements being misconstrued. In these situations, it is the translators who struggle to put forward the intended meaning with clarity and this makes translation an important field to study and analyze when it comes to cross-cultural communication. Owing to the growing importance of language and the power of translation in politics, this research analyzes part of President Bush’s speech in 2001 in which he used the word “Crusade” which caused his statement to be misconstrued. The research uses a discourse analysis of cross-cultural communication literature which provides answers supported by historical, linguistic, and communicative perspectives. The first finding indicates that the word ‘crusade’ carries different meaning and significance in the narratives of the Western world when compared to the Middle East. The second one is that, linguistically, maintaining cultural meanings through translation is quite difficult and challenging. Third, when it comes to the cross-cultural communication perspective, the common and frequent usage of literal translation is a sign of poor strategies being followed in translation training. Based on the example of Bush’s speech, this paper hopes to highlight the weak practices in translation in cross-cultural communication which are still commonly used across the world. Translation studies have to take issues such as this seriously and attempt to find a solution. In every language, there are words and phrases that have cultural, historical and social meanings that are woven into the language. Literal translation is not the solution for this problem because that strategy is unable to convey these meanings in the target language.

Keywords: crusade, metaphor, mistranslation, war in terror

Procedia PDF Downloads 106
2360 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
2359 Patterns of TV Simultaneous Interpreting of Emotive Overtones in Trump’s Victory Speech from English into Arabic

Authors: Hanan Al-Jabri

Abstract:

Simultaneous interpreting is deemed to be the most challenging mode of interpreting by many scholars. The special constraints involved in this task including time constraints, different linguistic systems, and stress pose a great challenge to most interpreters. These constraints are likely to maximise when the interpreting task is done live on TV. The TV interpreter is exposed to a wide variety of audiences with different backgrounds and needs and is mostly asked to interpret high profile tasks which raise his/her levels of stress, which further complicate the task. Under these constraints, which require fast and efficient performance, TV interpreters of four TV channels were asked to render Trump's victory speech into Arabic. However, they had also to deal with the burden of rendering English emotive overtones employed by the speaker into a whole different linguistic system. The current study aims at investigating the way TV interpreters, who worked in the simultaneous mode, handled this task; it aims at exploring and evaluating the TV interpreters’ linguistic choices and whether the original emotive effect was maintained, upgraded, downgraded or abandoned in their renditions. It also aims at exploring the possible difficulties and challenges that emerged during this process and might have influenced the interpreters’ linguistic choices. To achieve its aims, the study analysed Trump’s victory speech delivered on November 6, 2016, along with four Arabic simultaneous interpretations produced by four TV channels: Al-Jazeera, RT, CBC News, and France 24. The analysis of the study relied on two frameworks: a macro and a micro framework. The former presents an overview of the wider context of the English speech as well as an overview of the speaker and his political background to help understand the linguistic choices he made in the speech, and the latter framework investigates the linguistic tools which were employed by the speaker to stir people’s emotions. These tools were investigated based on Shamaa’s (1978) classification of emotive meaning according to their linguistic level: phonological, morphological, syntactic, and semantic and lexical levels. Moreover, this level investigates the patterns of rendition which were detected in the Arabic deliveries. The results of the study identified different rendition patterns in the Arabic deliveries, including parallel rendition, approximation, condensation, elaboration, transformation, expansion, generalisation, explicitation, paraphrase, and omission. The emerging patterns, as suggested by the analysis, were influenced by factors such as speedy and continuous delivery of some stretches, and highly-dense segments among other factors. The study aims to contribute to a better understanding of TV simultaneous interpreting between English and Arabic, as well as the practices of TV interpreters when rendering emotiveness especially that little is known about interpreting practices in the field of TV, particularly between Arabic and English.

Keywords: emotive overtones, interpreting strategies, political speeches, TV interpreting

Procedia PDF Downloads 159
2358 An Assessment of Impact of Financial Statement Fraud on Profit Performance of Manufacturing Firms in Nigeria: A Study of Food and Beverage Firms in Nigeria

Authors: Wale Agbaje

Abstract:

The aim of this research study is to assess the impact of financial statement fraud on profitability of some selected Nigerian manufacturing firms covering (2002-2016). The specific objectives focused on to ascertain the effect of incorrect asset valuation on return on assets (ROA) and to ascertain the relationship between improper expense recognition and return on assets (ROA). To achieve these objectives, descriptive research design was used for the study while secondary data were collected from the financial reports of the selected firms and website of security and exchange commission. The analysis of covariance (ANCOVA) was used and STATA II econometric method was used in the analysis of the data. Altman model and operating expenses ratio was adopted in the analysis of the financial reports to create a dummy variable for the selected firms from 2002-2016 and validation of the parameters were ascertained using various statistical techniques such as t-test, co-efficient of determination (R2), F-statistics and Wald chi-square. Two hypotheses were formulated and tested using the t-statistics at 5% level of significance. The findings of the analysis revealed that there is a significant relationship between financial statement fraud and profitability in Nigerian manufacturing industry. It was revealed that incorrect assets valuation has a significant positive relationship and so also is the improper expense recognition on return on assets (ROA) which serves as a proxy for profitability. The implication of this is that distortion of asset valuation and expense recognition leads to decreasing profit in the long run in the manufacturing industry. The study therefore recommended that pragmatic policy options need to be taken in the manufacturing industry to effectively manage incorrect asset valuation and improper expense recognition in order to enhance manufacturing industry performance in the country and also stemming of financial statement fraud should be adequately inculcated into the internal control system of manufacturing firms for the effective running of the manufacturing industry in Nigeria.

Keywords: Althman's Model, improper expense recognition, incorrect asset valuation, return on assets

Procedia PDF Downloads 161
2357 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
2356 Method and System of Malay Traditional Women Apparel Pattern Drafting for Hazi Attire

Authors: Haziyah Hussin

Abstract:

Hazi Attire software is purposely designed to be used for pattern drafting of the Malay Traditional Women Apparel. It is software created using LISP Program that works under AutoCAD engine and able to draft various patterns for Malay women apparels from fitted, semi-fitted and loose silhouettes. It is fully automatic and the user can select styles from the menu on the screen and enter the measurements. Within five seconds patterns are ready to be printed and sewn. Hazi Attire is different from other programmes available in the market since it is fully automatic, user-friendly and able to print selected pattern chosen quickly and accurately. With this software (Hazi Attire), the selected styles can be generated the pattern according to made-to-measure or standard sizes. It would benefit the apparel industries by reducing manufacturing lead time and cycle time.

Keywords: basic pattern, pattern drafting, toile, Malay traditional women apparel, the measurement parameters, fitted, semi-fitted and loose silhouette

Procedia PDF Downloads 269
2355 Recent Developments in Artificial Intelligence and Information Communications Technology

Authors: Dolapo Adeyemo

Abstract:

Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.

Keywords: ICT, IOT, accessibility solutions, universal design

Procedia PDF Downloads 87
2354 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting

Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt

Abstract:

BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.

Keywords: hearing loss, audiological data, machine learning, hearing aids

Procedia PDF Downloads 154
2353 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
2352 The Discourse Analysis of Friday Sermons in Pakistan: A Social Perspective

Authors: Syed Hamid Farooq Bukhari

Abstract:

This study intends to clarify the Friday sermon by evaluating the formation of its discourse, the composition, and selection of its subject matters, the structure, and functions of its rules as well as the outline of its communication proceeds, and the distinctiveness of its words along with definite provisions. In this research, a qualitative and descriptive method is used to draw out conclusions. This paper considers the sermon mechanism of the speech and advances it contextually. The information was composed in Pakistan and several of its mosques supposing the imams of the city and the location of the mosques. The presentation and analysis of the facts have directed to the subsequent conclusions: (1) the Friday sermon holds verbal discussion that has habitual and classic formation, (2) the approaches of the formation of the subjects consist of storytelling, quotation as well as the use of accepted terms, (3) the composition of the codes involves Arabic, English, Urdu, and many other local languages, (4) the expressions of the speech include all types of sermon acts, (5) different requisites emerge in the sermons demonstrating that the Friday sermon functions as an index or usage of verbal communication in an exacting field.

Keywords: Friday, sermons, Pakistan, social

Procedia PDF Downloads 164