Search results for: teaching and learning empathy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8593

Search results for: teaching and learning empathy

1453 Thai Student Teachers' Prior Understanding of Nature of Science (NOS)

Authors: N. Songumpai, W. Sumranwanich, S. Chatmaneerungcharoen

Abstract:

This research aims to study the understanding of 8 aspects of nature of science (NOS). The research participants were 39 General Science student teachers who were selected by purposive sampling. In 2015 academic year, they enrolled in the course of Science Education Learning Management. Qualitative research was used as research methodology to understand how the student teachers propose on NOS. The research instruments consisted of open-ended questionnaires and semi-structure interviews that were used to assess students’ understanding of NOS. Research data was collected by 8 items- questionnaire and was categorized into students’ understanding of NOS, which consisted of complete understanding (CU), partial understanding (PU), misunderstanding (MU) and no understanding (NU). The findings reveal the majority of students’ misunderstanding of NOS regarding the aspects of theory and law(89.7%), scientific method(61.5%) and empirical evidence(15.4%) respectively. From the interview data, the student teachers present their misconceptions of NOS that indicate about theory and law cannot change; science knowledge is gained through experiment only (step by step); science is the things that are around humans. These results suggest that for effective science teacher education, the composition of design of NOS course needs to be considered. Therefore, teachers’ understanding of NOS is necessary to integrate into professional development program/course for empowering student teachers to begin their careers as strong science teachers in schools.

Keywords: nature of science, student teacher, no understanding, misunderstanding, partial understanding, complete understanding

Procedia PDF Downloads 262
1452 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
1451 English as a Foreign Language Students’ Perceptions towards the British Culture: The Case of Batna 2 University, Algeria

Authors: Djelloul Nedjai

Abstract:

The issue of cultural awareness triggers many controversies, especially in a context where individuals do not share the same cultural backgrounds and characteristics. The Algerian context is no exception. It has been widely documented by the literature that culture remains essential in many domains. In higher education, for instance, culture plays a pivotal role in shaping individuals’ perceptions and attitudes. Henceforth, the current paper attempts to look at the perceptions of the British culture held by students engaged in learning English as a Foreign Language (EFL) at the department of English at Banta 2 University, Algeria. It also inquires into EFL students’ perceptions of British culture. To address the aforementioned research queries, a descriptive study has been carried out wherein a questionnaire of fifteen (15) items has been deployed to collect students’ attitudes and perceptions toward British culture. Results showcase that, indeed, EFL students of the department of English at Banta 2 University hold both positive and negative perceptions towards British culture at different levels. The explanation could relate to the student's lack of acquaintance with and awareness of British culture. Consequently, this paper is an attempt to address the issue of cultural awareness from the perspective of EFL students.

Keywords: British culture, cultural awareness, EFL students’ perceptions, higher education

Procedia PDF Downloads 90
1450 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 65
1449 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 187
1448 Digital Economy as an Alternative for Post-Pandemic Recovery in Latin America: A Literature Review

Authors: Armijos-Orellana Ana, González-Calle María, Maldonado-Matute Juan, Guerrero-Maxi Pedro

Abstract:

Nowadays, the digital economy represents a fundamental element to guarantee economic and social development, whose importance increased significantly with the arrival of the COVID-19 pandemic. However, despite the benefits it offers, it can also be detrimental to those developing countries characterized by a wide digital divide. It is for this reason that the objective of this research was to identify and describe the main characteristics, benefits, and obstacles of the digital economy for Latin American countries. Through a bibliographic review, using the analytical-synthetic method in the period 1995-2021, it was determined that the digital economy could give way to structural changes, reduce inequality, and promote processes of social inclusion, as well as promote the construction and participatory development of organizational structures and institutional capacities in Latin American countries. However, the results showed that the digital economy is still incipient in the region and at least three factors are needed to establish it: joint work between academia, the business sector and the State, greater emphasis on learning and application of digital transformation and the creation of policies that encourage the creation of digital organizations.

Keywords: developing countries, digital divide, digital economy, digital literacy, digital transformation

Procedia PDF Downloads 141
1447 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia

Authors: Madara Apsalone

Abstract:

Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.

Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors

Procedia PDF Downloads 391
1446 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation

Authors: Anne Eugenia Wright

Abstract:

This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.

Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All

Procedia PDF Downloads 141
1445 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 439
1444 The Role of Metacognitive Strategy Intervention through Dialogic Interaction on Listeners’ Level of Cognitive Load

Authors: Ali Babajanzade, Hossein Bozorgian

Abstract:

Cognitive load plays an important role in learning in general and L2 listening comprehension in particular. This study is an attempt to investigate the effect of metacognitive strategy intervention through dialogic interaction (MSIDI) on L2 listeners’ cognitive load. A mixed-method design with 50 participants of male and female Iranian lower-intermediate learners between 20 to 25 years of age was used. An experimental group (n=25) received weekly interventions based on metacognitive strategy intervention through dialogic interaction for ten sessions. The second group, which was control (n=25), had the same listening samples with the regular procedure without a metacognitive intervention program in each session. The study used three different instruments: a) a modified version of the cognitive load questionnaire, b) digit span tests, and c) focused group interviews to investigate listeners’ level of cognitive load throughout the process. Results testified not only improvements in listening comprehension in MSIDI but a radical shift of cognitive load rate within this group. In other words, listeners experienced a lower level of cognitive load in MSIDI in comparison with their peers in the control group.

Keywords: cognitive load theory, human mental functioning, metacognitive theory, listening comprehension, sociocultural theory

Procedia PDF Downloads 148
1443 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 35
1442 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 446
1441 The Effect of Al Andalus Improvement Model on the Teachers Performance and Their High School Students' Skills Acquiring

Authors: Sobhy Fathy A. Hashesh

Abstract:

The study was carried out in the High School Classes of Andalus Private Schools, boys section, using control and experimental groups that were randomly assigned. The study investigated the effect of Al-Andalus Improvement Model (AIM) on the development of students’ skills acquiring. The society of the study composed of Al-Andalus Private Schools, high school students, boys Section (N=700), while the sample of the study composed of four randomly assigned groups two groups of teachers (N=16) and two groups of students (N=42) with one experimental group and one control group for teachers and their students respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences in teachers’ performances and students' skills acquiring for the favor of the experimental groups and there was a strong correlation between the teachers performances and the students skills acquiring. The study recommended the implementation of the AIM model for the sake of teachers performances and students’ learning outcomes.

Keywords: AIM, improvement model, Classera, Al-Andalus Improvement Model.

Procedia PDF Downloads 166
1440 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks

Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck

Abstract:

The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.

Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism

Procedia PDF Downloads 104
1439 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 328
1438 Honey Dressing versus Silver Sulfadiazine Dressing for Wound Healing in Second Degree Thermal Burn Patients

Authors: Syed Faizan Hassan Shah

Abstract:

Introduction: Burn injuries are among the most devastating of all injuries. Burns is the fourth most common type of trauma worldwide. Ap?proximately 90 percent of burns occur in low to middle-income countries. Nearly half a million Americans each year, with approximately 40,000 hospitalizations and 3,400 deaths annually, suffer burns. The survival rate for admitted burn patients has improved consistently over the past four decades, largely attributed to national decreases in burn size, improvements in burn critical care, and advancements in burn wound care. Objectives: The present study was conducted to compare the efficacy of Honey dressing versus Silver Sulfadiazine dressing for complete wound healing in the 2nd-degree thermal burn. Study Design: A Randomized controlled trial was carried out in the Department of General Surgery/burn unit of Ayub Teaching Hospital Abbottabad from July to December 2018. The study population included thermal burn patients presenting with ASA-I, ASA-II, and body surface area less than 50% of the age group above 12 to 60 years of either gender. All the patients were randomly divided into two equal groups of patients by blocked randomization using permuted block g 6. In group ‘A,’ patients underwent dressing by honey method, and patients in group ‘B’ had silver sulfadiazine dressing. The dressing was changed every 48 hours by a senior sur?geon, and the condition of the wound was observed. Time duration till complete wound healing was noted in the Proforma. Results: A total of 100 patients were selected and divided into two groups of 50 patients in each two groups. The mean age of the patients was 27.66±13.388 ran?ging from 12 to 60 years of age, and the mean duration of complete healing of wound in days was 20.20±6.251, ranging from 2 to 30 days. Mean comparison of age with both groups, age of the patients was 21.24±3.761 (n=50) in group ‘A,’ i.e., honey dressing, and 19.16±7.911 (n=50) was in group ‘B,’ i.e., silver sulfadiazine dressing. Efficacy in the honey dressing group was found effective in 48(75.0%) and ineffect? ive in 2(5.6%) out of 50 patients. Efficacy in silver sulfadiazine dressing group 16(25.0%) was three found effective and in 34(94.4%) was inef?fective out of 50 patients. There was a statistically significant difference between both groups. (P=0.000) . Conclusion: honey dressing is more effective as compared to silver sulfadiazine dressing in terms of complete wound healing in second-degree thermal burn patients; our study also concluded the same.

Keywords: efficacy, honey dressing, silver sulfadiazine dressing, wound healing

Procedia PDF Downloads 109
1437 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 168
1436 A Case Study on EFL Teachers’ Experience with Reflective Practice in a Professional Development Course in Kuwait

Authors: Maaly Jarrah

Abstract:

There is no doubt that reflective practice has become a stable component in continuous professional development (CPD) courses around the world for the purpose of promoting teacher development, meaningful learning, and deliberate teacher personal and professional growth. However, while there is much research on the benefits of integrating reflective practice in teacher CPD courses, not enough research explores EFL teachers’ experiences with engagement in reflective practice in the CPD from their own perspectives. This research employed a case study approach to explore the experience of 7 EFL teachers with engaging in reflective practice in a CPD course that took place in Kuwait.The participating EFL teachers engaged in collaborative dialogue reflections and completed reflection journal entries as part of the course. Data was collected through semi-structured interviews and analyzed thematically. Findings indicate that the participating teachers’ positive experience with reflective practice is associated with their engagement in collaborative dialogue reflections, while challenges and negative feelings are associated with writing their reflection journal entries. Accordingly, the study offers recommendations for CPD courses to help improve EFL teachers’ experiences with engagement in reflective practice.

Keywords: Collaborative dialogue reflections, continuous professional development, EFL teachers, reflection journals, teacher reflective practice

Procedia PDF Downloads 171
1435 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 294
1434 Activation of Google Classroom Features to Engage Introvert Students in Comprehensible Output

Authors: Raghad Dwaik

Abstract:

It is well known in language acquisition literature that a mere understanding of a reading text is not enough to help students build proficiency in comprehension. Students should rather follow understanding by attempting to express what has been understood by pushing their competence to the limit. Learners' attempt to push their competence was given the term "comprehensible output" by Swain (1985). Teachers in large classes, however, find it sometimes difficult to give all students a chance to communicate their views or to share their ideas during the short class time. In most cases, students who are outgoing dominate class discussion and get more opportunities for practice which leads to ignoring the shy students totally while helping the good ones become better. This paper presents the idea of using Google Classroom features of posting and commenting to allow students who hesitate to participate in class discussions about a reading text to write their views on the wall of a Google Classroom and share them later after they have received feedback and comments from classmates. Such attempts lead to developing their proficiency through additional practice in comprehensible output and to enhancing their confidence in themselves and their views. It was found that virtual classroom interaction would help students maintain vocabulary, use more complex structures and focus on meaning besides form.

Keywords: learning groups, reading TESOL, Google Classroom, comprehensible output

Procedia PDF Downloads 78
1433 Tiaki Moemoeā: The Dream Keeper’s Role Within the Learning Journey of Cook Island Nursing Students

Authors: Yvonne Kainuku, Wendy Trimmer

Abstract:

A critical element in closing the gaps in health disparities is the presence of a culturally appropriate health workforce. This study presents one of the findings from a qualitative study that explored the lived experiences of Cook Islands peoples during their three-year nursing training within a Bachelor of Nursing Pacific (BNP) programme in Aotearoa NZ. The study utilized both qualitative and context-specific methods; these included the Tivaevae Research Model and Qualitative Inquiry. The aim of the research was to collect stories from registered nurses about their experiences of culturally responsive pedagogy and their connection to content relating to Pacific world views and Pacific ways of knowing while they were students. Further to this, the researcher sought to recognize factors that supported the participant's successful completion of becoming a registered nurse. This study will introduce the theme of Tiaki moemoeā (dream keeper), identifying essential elements that engage learners along their journey. The various features that define the theme Tiaki moemoeā (dream keeper) have the potential to contribute to transformational change in nursing education training in Aotearoa, New Zealand.

Keywords: education, nursing, pacific, pedagogy

Procedia PDF Downloads 53
1432 Perusing the Influence of a Visual Editor in Enabling PostgreSQL Query Learn-Ability

Authors: Manuela Nayantara Jeyaraj

Abstract:

PostgreSQL is an Object-Relational Database Management System (ORDBMS) with an architecture that ensures optimal quality data management. But due to the shading growth of similar ORDBMS, PostgreSQL has not been renowned among the database user community. Despite having its features and in-built functionalities shadowed, PostgreSQL renders a vast range of utilities for data manipulation and hence calling for it to be upheld more among users. But introducing PostgreSQL in order to stimulate its advantageous features among users, mandates endorsing learn-ability as an add-on as the target groups considered consist of both amateur as well as professional PostgreSQL users. The scope of this paper deliberates providing easy contemplation of query formulations and flows through a visual editor designed according to user interface principles that standby to support every aspect of making PostgreSQL learn-able by self-operation and creation of queries within the visual editor. This paper tends to scrutinize the importance of choosing PostgreSQL as the working database environment, the visual perspectives that influence human behaviour and ultimately learning, the modes in which learn-ability can be provided via visualization and the advantages reaped by the implementation of the proposed system features.

Keywords: database, learn-ability, PostgreSQL, query, visual-editor

Procedia PDF Downloads 174
1431 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 137
1430 Elasticity of Soil Fertility Indicators and pH in Termite Infested Cassava Field as Influenced by Tillage and Organic Manure Sources

Authors: K. O. Ogbedeh, T. T. Epidi, E. U. Onweremadu, E. E. Ihem

Abstract:

Apart from the devastating nature of termites as pest of cassava, nearly all termite species have been implicated in soil fertility modifications. Elasticity of soil fertility indicators and pH in termite infested cassava field as influenced by tillage and organic manure sources in Owerri, Southeast, Nigeria was investigated in this study. Three years of of field trials were conducted in 2007, 2008 and 2009 cropping seasons respectively at the Teaching and Research Farm of the Federal University of Technology, Owerri. The experiments were laid out in a 3x6 split-plot factorial arrangement fitted into a randomized complete block design (RCBD) with three replications. The TMS 4 (2)1425 was the cassava cultivar used. Treatments consists three tillage methods (zero, flat and mound), two rates of municipal waste (1.5 and 3.0tonnes/ha), two rates of Azadirachta indica (neem) leaves (20 and 30tonnes/ha), control (0.0 tonnes/ha) and a unit dose of carbofuran (chemical check). Data were collected on pre-planting soil physical and chemical properties, post-harvest soil pH (both in water and KCl) and residual total exchangeable bases (Ca, K, Mg and Na). These were analyzed using a Mixed-model procedure of Statistical Analysis Software (SAS). Means were separated using Least Significant Difference (LSD.) at 5% level of probability. Result shows that the native soil fertility status of the experimental site was poor. However soil pH increased substantially in plots where mounds, A.indica leaves at 30t/ha and municipal waste (1.5 and 3.0t/ha) were treated especially in 2008 and 2009. In 2007 trial, highest soil pH was maintained with flat (5.41 in water and 4.97 in KCl). Control on the other hand, recorded least soil pH especially in 2009 with values of 5.18 and 4.63 in water and KCl respectively. Equally, mound, A. indica leaves at 30t/ha and municipal waste at 3.0t/ha consistently increased organic matter content of the soil than other treatments. Finally, mound and A. indica leaves at 30t/ha linearly and consistently increased residual total exchangeable bases of the soil.

Keywords: elasticity, fertility, indicators, termites, tillage, cassava and manure sources

Procedia PDF Downloads 303
1429 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”

Authors: Lauren B. Birney

Abstract:

The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.

Keywords: environmental science, citizen science, STEM, technology

Procedia PDF Downloads 98
1428 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning

Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król

Abstract:

Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.

Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building

Procedia PDF Downloads 117
1427 Innovative Schools as Birthplaces for Promoting Educational Innovations: A Case Study of Two Hungarian Schools

Authors: Khin Khin Thant Sin

Abstract:

This study is a case study which investigates successful and ongoing bottom-up innovations for school improvement initiatives in Hungary. Two innovative schools are selected in this study due to their outstanding achievement during the past ten years in Hungary. In one school, data from the personal experiences of a school principal who initiated the bottom-up innovation are included. For the second school, three interviews were carried out with two schoolteachers and one secondary school student. In addition, desk research, including the principal’s published articles, the schoolteachers’ master thesis, the school websites, and other published articles, are analysed to explore the schools’ innovative processes. This study investigates how bottom-up innovation led to major achievements in student learning, teacher professional development, networking and collaboration with other schools, and the establishment of successful partnerships with universities. The highlight of this study is how innovative schools can be the major sources promoting educational innovations as well as improving teacher education, especially in initial teacher education and continuous professional development.

Keywords: school innovation, teacher education, hungary, educational innovation, school improvement

Procedia PDF Downloads 110
1426 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition

Authors: Edward Sarich, Jack Ryan

Abstract:

In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.

Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation

Procedia PDF Downloads 150
1425 Facilitating Career Development of Women in Science, Technology, Engineering, Mathematics and Medicine: Towards Increasing Understanding, Participation, Progression and Retention through an Intersectionality Perspective

Authors: Maria Tsouroufli, Andrea Mondokova, Subashini Suresh

Abstract:

Background: The under-representation of women and consequent failure to fulfil their potential contribution to Science, Technology, Engineering, Maths, and Medicine (STEMM) subjects in the UK is an issue that the Higher Education sector is being encouraged to address. Focus: The aim of this research is to investigate the barriers, facilitators, and incentives that influence diverse groups of women who have embarked upon a related career in STEMM subjects. The project will address a number of interconnected research questions: 1. How do participants perceive the barriers, facilitators and incentives for women in terms of research, teaching and management/leadership at each stage of their development towards forging a career in STEMM? 2. How might gender intersect with ethnicity, pregnancy/maternity and academic grade in the career experiences of women in STEMM? 3. How do participants perceive the example of female role models in emulating them as a career model? 4. How do successful females in STEMM see themselves as role models and what strategies do they employ to promote their careers? 5. How does institutional culture manifest itself as a barrier or facilitator for women in STEMM subjects in the institution? Methodology and Theoretical framework: A mixed-methodology will be employed in a case study of one university. The study will draw on extant quantitative data for context and involve conducting a qualitative inquiry to discover the perceptions of staff and students around the key concepts under study (career progression, sense of belonging and tenure, role-models, personal satisfaction, perceived gender in/equality, institutional culture). The analysis will be informed by an intersectionality framework, feminist and gender theory, and organisational psychology and human resource management perspectives. Implications: Preliminary findings will be collected in 2017. Conclusions will be drawn and used to inform recruitment and retention, and the development and implementation of initiatives to enhance the experiences and outcomes of women working and studying in STEMM subjects in Higher Education.

Keywords: under-representation, women, STEMM subjects, intersectionality

Procedia PDF Downloads 286
1424 Human Relationships in the Virtual Classrooms as Predictors of Students Academic Resilience and Performance

Authors: Eddiebal P. Layco

Abstract:

The purpose of this study is to describe students' virtual classroom relationships in terms of their relationship to their peers and teachers; academic resilience; and performance. Further, the researcher wants to examine if these virtual classroom relations predict students' resilience and performance in their academics. The data were collected from 720 junior and senior high school or grade 7 to 12 students in selected state universities and colleges (SUCs) in Region III offering online or virtual classes during S.Y. 2020-2021. Results revealed that virtual classroom relationships such as teacher-student and peer relationships predict academic resilience and performance. This implies that students' academic relations with their teachers and peers have something to do with their ability to bounce back and beat the odds amidst challenges they faced in the online or virtual learning environment. These virtual relationships significantly influence also their academic performance. Adequate teacher support and positive peer relations may lead to enhanced academic resilience, which may also promote a meaningful and fulfilled life academically. Result suggests that teachers should develop their students' academic resiliency and maintain good relationships in the classroom since these results in academic success.

Keywords: virtual classroom relationships, teacher-pupil relationship, peer-relationship, academic resilience, academic performance

Procedia PDF Downloads 153