Search results for: deep Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8404

Search results for: deep Learning

1294 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 268
1293 Evidence Based Policy Studies: Examining Alternative Policy Practice towards Improving Enrolment to Higher Education in Nigeria

Authors: Muftahu Jibirin Salihu, Hazri Jamil

Abstract:

The persisting challenge of access and enrolment to higher education in commonwealth countries has been reported in several studies, including reports of the international organization such as World Bank, UNESCO among others however from the macro perspective. The overarching aim of this study is to examine alternative policy practices towards improving access to university education in Nigeria at meso level of policy practice from evidence base policy studies using one university as a case. The study adopted a qualitative approach to gain insightful understanding on the issue of the study employing a semi-structure interview and policy documents as the means for obtaining the data and other relevant information for the study. The participants of the study were purposively chosen which comprise of a number of individuals from the selected university and other related organization which responsible for the policies development and implementation of Nigerian higher education system. From the findings of the study, several initiatives have been taken at meso level to address this challenge including the introduction of the University Matriculation Program as an alternative route for enhancing to access to the university education. However, the study further provided a number of recommendations which aimed at improving access to university education such as improving the entry requirements, society orientation on university education and the issue of ranking of certificate among the Nigerian higher institutions of learning.

Keywords: policy practice, access, enrolment, university, education, Nigeria

Procedia PDF Downloads 265
1292 “It Takes a Community to Save a Child”: A Qualitative Analysis of Child Trafficking Interventions from Practitioner Perspectives

Authors: Crispin Rakibu Mbamba

Abstract:

Twenty-two years after the adoption of the United Nation Trafficking Protocol, evidence suggest that child trafficking continues to rise. Community level factors, like poverty which creates the conditions for children’s vulnerability is key to the rise in trafficking cases in Ghana. Albeit, growing evidence suggestthat despite the vulnerabilities, communities have the capacity to prevent and address child trafficking issues. This study contributes to this positive agenda by exploring the ways in which communities (and the key actors) in Ghana contribute to child trafficking interventions.The study objective is explored through in-depth interviews with practitioners (including social workers) from an organization working in trafficking hotspots in Ghana. Interviews wereanalyzed thematically with the help of HyperRESEARCH software. From the in-depth interviews, three themes were identified as the ways in which communities are involved in child trafficking interventions: 1) engagement of community leaders, 2) community-led anti-trafficking committees and 3) knowledge about trafficking. Albeit the cultural differences, evidence on the instrumental role of community chiefs and leaders provide important learning on how to harness trafficking intervention measures and ensure better child protection practices. Based on the findings, we recommend the need to intensify trafficking awareness campaigns in rural communities where education is lacking to contribute to United Nations (UN) promoting Just, Peaceful and Inclusive societies’ mandate.

Keywords: child trafficking, community interventions, knowledge on trafficking, human trafficking intervention

Procedia PDF Downloads 114
1291 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 401
1290 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 96
1289 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 163
1288 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 93
1287 Optimal Framework of Policy Systems with Innovation: Use of Strategic Design for Evolution of Decisions

Authors: Yuna Lee

Abstract:

In the current policy process, there has been a growing interest in more open approaches that incorporate creativity and innovation based on the forecasting groups composed by the public and experts together into scientific data-driven foresight methods to implement more effective policymaking. Especially, citizen participation as collective intelligence in policymaking with design and deep scale of innovation at the global level has been developed and human-centred design thinking is considered as one of the most promising methods for strategic foresight. Yet, there is a lack of a common theoretical foundation for a comprehensive approach for the current situation of and post-COVID-19 era, and substantial changes in policymaking practice are insignificant and ongoing with trial and error. This project hypothesized that rigorously developed policy systems and tools that support strategic foresight by considering the public understanding could maximize ways to create new possibilities for a preferable future, however, it must involve a better understating of Behavioural Insights, including individual and cultural values, profit motives and needs, and psychological motivations, for implementing holistic and multilateral foresight and creating more positive possibilities. To what extent is the policymaking system theoretically possible that incorporates the holistic and comprehensive foresight and policy process implementation, assuming that theory and practice, in reality, are different and not connected? What components and environmental conditions should be included in the strategic foresight system to enhance the capacity of decision from policymakers to predict alternative futures, or detect uncertainties of the future more accurately? And, compared to the required environmental condition, what are the environmental vulnerabilities of the current policymaking system? In this light, this research contemplates the question of how effectively policymaking practices have been implemented through the synthesis of scientific, technology-oriented innovation with the strategic design for tackling complex societal challenges and devising more significant insights to make society greener and more liveable. Here, this study conceptualizes the notions of a new collaborative way of strategic foresight that aims to maximize mutual benefits between policy actors and citizens through the cooperation stemming from evolutionary game theory. This study applies mixed methodology, including interviews of policy experts, with the case in which digital transformation and strategic design provided future-oriented solutions or directions to cities’ sustainable development goals and society-wide urgent challenges such as COVID-19. As a result, artistic and sensual interpreting capabilities through strategic design promote a concrete form of ideas toward a stable connection from the present to the future and enhance the understanding and active cooperation among decision-makers, stakeholders, and citizens. Ultimately, an improved theoretical foundation proposed in this study is expected to help strategically respond to the highly interconnected future changes of the post-COVID-19 world.

Keywords: policymaking, strategic design, sustainable innovation, evolution of cooperation

Procedia PDF Downloads 194
1286 An Investigation into Problems Confronting Pre-Service Teachers of French in South-West Nigeria

Authors: Modupe Beatrice Adeyinka

Abstract:

French, as a foreign language in Nigeria, is pronounced to be the second official language and a compulsory subject in the primary school level; hence, colleges of education across the nation are saddled with the responsibility of training teachers for the subject. However, it has been observed that this policy has not been fully implemented, for French teachers in training, do face many challenges, of which translation is chief. In a bid to investigate the major cause of the perceived translation problem, this study examined French translation problems of pre-service teachers in selected colleges of education in the southwest, Nigeria. This study adopted a descriptive survey research design. The simple random sampling technique was used to select four colleges of education in the southwest, where 100 French students were randomly selected by selecting 25 from each school. The pre-service teachers’ French translation problems’ questionnaire (PTFTPQ) was used as an instrument while four research questions were answered and three null hypotheses were tested. Among others, the findings revealed that students do have problems with false friends, though mainly with its interpretation when attempting French-English translation and vice versa; majority of the students make use of French dictionary as a way out and found the material very useful for their understanding of false friends. Teachers were, therefore, urged to attend in-service training where they would be exposed to new and emerging strategies, approaches and methodologies of French language teaching that will make students overcome the challenge of translation in learning French.

Keywords: false friends, French language, pre-service teachers, source language, target language, translation

Procedia PDF Downloads 158
1285 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development

Authors: Poteet Frances, Glovinski Ira

Abstract:

INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.

Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation

Procedia PDF Downloads 59
1284 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 149
1283 A Sociolinguistic Investigation of Code-Switching Practices of ESL Students Outside EFL Classrooms

Authors: Shehroz Mukhtar, Maqsood Ahmed, Abdullah Mukhtar, Choudhry Shahid, Waqar Javaid

Abstract:

Code switching is a common phenomenon, generally observed in multilingual communities across the globe. A critical look at code switching literature reveals that mostly code switching has been studied in classroom in learning and teaching context while code switching outside classroom in settings such as café, hostel and so on have been the least explored areas. Current research investigated the reasons for code switching in the interactive practices of students and their perceptions regarding the same outside the classroom settings. This paper is the study of the common practice that prevails in the Universities of Sialkot that bilinguals mix two languages when they speak in different class room situations. In Pakistani classrooms where Multilingual are in abundance i.e. they can speak two or more than two languages at the same time, the code switching or language combination is very common. The teachers of Sialkot switch from one language to another consciously or unconsciously while teaching English in the class rooms. This phenomenon has not been explored in the Sialkot’s teaching context. In Sialkot private educational institutes does not encourage code-switching whereas the public or government institutes use it frequently. The crux of this research is to investigate and identify the importance of code switching by taking its users in consideration. Survey research method and survey questionnaire will be used to get exact data from teachers and students. We will try to highlight the functions and importance of code switching in foreign language classrooms of Sialkot and will explore why this trend is emerging in Sialkot.

Keywords: code switching, bilingual context, L1, L2

Procedia PDF Downloads 64
1282 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies

Authors: Rashmi Gupta

Abstract:

Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.

Keywords: attention, distractors, motivational salience, valence

Procedia PDF Downloads 219
1281 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia

Authors: Baohua Yu

Abstract:

In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.

Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction

Procedia PDF Downloads 303
1280 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 365
1279 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 73
1278 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy

Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge

Abstract:

There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.

Keywords: bioeconomy, forestry, innovation, entrepreneurship

Procedia PDF Downloads 115
1277 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 12
1276 Green Windows of Opportunity in Latin American Countries

Authors: Fabianna Bacil, Zenathan Hasannundin, Clovis Freire

Abstract:

The green transition opens green windows of opportunity – temporary moments in which there are lower barriers and shorter learning periods for developing countries to enter emerging technologies and catch-up. However, taking advantage of these windows requires capabilities in national sectoral systems to adopt and develop technologies linked to green sectors as well as strong responses to build the required knowledge, skills, and infrastructure and foster the growth of targeted sectors. This paper uses UNCTAD’s frontier technology readiness index to analyse the current position of Latin America and the Caribbean to use, adopt, and adapt frontier technologies, examining the preconditions in the region to take up windows of opportunity that arise with the green transition. The index highlights the inequality across countries in the region, as well as gaps in capabilities dimensions, especially in terms of R&D. Moving to responses, it highlights industrial policies implemented to foster the growth of green technologies, emphasising the essential role played by the state to build and strengthen capabilities and provide infant industry protection that enables the growth of these sectors. Overall, while there are exceptions, especially in the Brazilian case, countries in Latin America and the Caribbean should focus on strengthening their capabilities to be better positioned, especially in terms of knowledge creation, infrastructure, and financing availability.

Keywords: Green technologies, Industrial policy, Latin America, windows of opportunity

Procedia PDF Downloads 62
1275 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation

Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu

Abstract:

Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.

Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care

Procedia PDF Downloads 80
1274 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
1273 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 111
1272 Outsourcing the Front End of Innovation

Authors: B. Likar, K. Širok

Abstract:

The paper presents a new method for efficient innovation process management. Even though the innovation management methods, tools and knowledge are well established and documented in literature, most of the companies still do not manage it efficiently. Especially in SMEs the front end of innovation - problem identification, idea creation and selection - is often not optimally performed. Our eMIPS methodology represents a sort of "umbrella methodology"- a well-defined set of procedures, which can be dynamically adapted to the concrete case in a company. In daily practice, various methods (e.g. for problem identification and idea creation) can be applied, depending on the company's needs. It is based on the proactive involvement of the company's employees supported by the appropriate methodology and external experts. The presented phases are performed via a mixture of face-to-face activities (workshops) and online (eLearning) activities taking place in eLearning Moodle environment and using other e-communication channels. One part of the outcomes is an identified set of opportunities and concrete solutions ready for implementation. The other also very important result is connected to innovation competences for the participating employees related with concrete tools and methods for idea management. In addition, the employees get a strong experience for dynamic, efficient and solution oriented managing of the invention process. The eMIPS also represents a way of establishing or improving the innovation culture in the organization. The first results in a pilot company showed excellent results regarding the motivation of participants and also as to the results achieved.

Keywords: creativity, distance learning, front end, innovation, problem

Procedia PDF Downloads 327
1271 A Sociolinguistic Investigation of Code-Switching Practices of ESL Students Outside EFL Classrooms

Authors: Shehroz Mukhtar, Maqsood Ahmed, Abdullah Mukhtar, Choudhry Shahid, Waqar Javaid

Abstract:

Code switching is a common phenomenon, generally observed in multilingual communities across the globe. A critical look at code-switching literature reveals that mostly code-switching has been studied in the classrooms in learning and teaching contexts, while code-switching outside the classroom in settings such as café, hostels and so on has been the least explored areas. The current research investigated the reasons for code-switching in the interactive practices of students and their perceptions regarding the same outside the classroom settings. This paper is the study of the common practice that prevails in the Universities of Sialkot that bilinguals mix two languages when they speak in different classroom situations. In Pakistani classrooms where Multilingual is in abundance, i.e. they can speak two or more two languages at the same time, code-switching or language combination is very common. The teachers of Sialkot switch from one language to another consciously or unconsciously while teaching English in the classrooms. This phenomenon has not been explored in Sialkot’s teaching context. In Sialkot, private educational institutes do not encourage code-switching, whereas public or government institutes use it frequently. The crux of this research is to investigate and identify the importance of code-switching by taking its users into consideration. The survey research method and survey questionnaire will be used to get exact data from teachers and students. We will try to highlight the functions and importance of code switching in foreign language classrooms of Sialkot and will explore why this trend is emerging in Sialkot.

Keywords: code switching, foreign language classrooms, bilingual context, use of L1, importance of L2.

Procedia PDF Downloads 65
1270 Efficacy of Self-Assessment Metacognitive Strategy on Academic Performance Among Upper Basic Students in Ankpa, Kogi State, Nigeria

Authors: Daodu Joshua Rotimi

Abstract:

This study investigated the Efficacy of Self-Assessment Metacognitive Strategy on Academic performance in Energy Concepts among Upper Basic Science Students in Ankpa, Kogi State, Nigeria. The research design adopted for the study was a Quasi-experimental control group design which employed a pretest, posttest of the experimental and control groups. The population of the study consisted of one hundred and twenty-four (124) JSSII Students; sixty-five (65) for the experimental group and (59) for the control group. The instrument used for the study was the Energy Concept Performance Test (ECPT), with a reliability coefficient of 0.80. Two research questions were answered using descriptive statistics of mean and standard deviation, while two hypotheses were tested using a t-test at P≤0.05 level of significance. The findings of the study revealed that the use of the Self-Assessment Metacognitive Strategy has a positive effect on students’ performance in energy concepts among upper Basic Science Students leading to high academic performance; also, there is no significant difference in the mean Academic Performance scores between Male and Female students taught Energy Concept using Self-Assessment Metacognitive Strategy. Based on the research findings, recommendations were made, which include that Secondary school teachers should be encouraged the use Self-Assessment Metacognitive strategy so as to make the learning process attractive, interactive and enriching to the learners.

Keywords: metacognition, self-assessment, performance, efficacy

Procedia PDF Downloads 122
1269 Employees and Their Perception of Soft Skills on Their Employability

Authors: Sukrita Mukherjee, Anindita Chaudhuri

Abstract:

Soft skills are a crucial aspect for employees, and these skills are not confined to any particular field rather, it guarantees further career growth and job opportunities for employees who are seeking growth. Soft skills are also regarded as personality-specific skills that are observable and are qualitative in nature, which determines an employee’s strengths as a leader. When an employee intends to hold his job, then the person must make effective use of his personal resources, that, in turn, impacts his employability in a positive manner. An employee at his workplace is expected to make effective use of his personal resources. The resources that are to be used by the employee are generally of two types. First type of resources are occupation related, which is related with the educational background of the employee, and the second type of resources are the psychological resources of the employee, such as self-knowledge, career orientation awareness, sense of purpose and emotional literacy, that are considered crucial for an employee in his workplace. The present study is a qualitative study which includes 10 individuals working in IT Sector and Service Industry, respectively. For IT sector, graduate people are considered, and for the Service Industry, individuals who have done a Professional course in order to get into the industry are considered. The emerging themes from the findings after thematic analysis reveal that different aspect of Soft skills such as communication, decision making, constant learning, keeping oneself updated with the latest technological advancement, emotional intelligence are some of the important factors that helps an employee not only to sustain his job, but also grow in his workplace.

Keywords: employabiliy, soft skils, employees, resources, workplace

Procedia PDF Downloads 61
1268 Cognitive Benefits of Being Bilingual: The Effect of Language Learning on the Working Memory in Emerging Miao-Mandarin Juveniles in Rural Regions of China

Authors: Peien Ma

Abstract:

Bilingual effect/advantage theorized the positive effect of being bilingual on general cognitive abilities, but it was unknown which factors tend to modulate these bilingualism effects on working memory capacity. This study imposed empirical field research on a group of low-SES emerging bilinguals, Miao people, in the hill tribes of rural China to investigate whether bilingualism affected their verbal working memory performance. 20 Miao-Chinese bilinguals (13 girls and 7 boys with a mean age of 11.45, SD=1.67) and 20 Chinese monolingual peers (13 girls and 7 boys with a mean age of 11.6, SD=0.68) were recruited. These bilingual and monolingual juveniles, matched on age, sex, socioeconomic status, and educational status, completed a language background questionnaire and a standard forward and backward digit span test adapted from Wechsler Adult Intelligence Scale-Revised (WAIS-R). The results showed that bilinguals earned a significantly higher overall mean score of the task, suggesting the superiority of working memory ability over the monolinguals. And bilingual cognitive benefits were independent of proficiency levels in learners’ two languages. The results suggested that bilingualism enhances working memory in sequential bilinguals from low SES backgrounds and shed light on our understanding of the bilingual advantage from a psychological and social perspective.

Keywords: bilingual effects, heritage language, Miao/Hmong language Mandarin, working memory

Procedia PDF Downloads 155
1267 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 76
1266 An Assessment of Inferior Dental (IDN) and Lingual Nerve (LN) Injuries Following Third Molar Removal Under LA, IVS, and GA - An Audit and Case-Series

Authors: Aamna Tufail, Catherine Anyanwu

Abstract:

Introduction/Aims: Neurosensory deficits following third molar removal affect the quality of life markedly. The purpose of this audit was to evaluate the incidence of IDN and LN damage and to compare departmental rates to an established standard. A secondary objective was to provide a descriptive summary of identified cases for clinical learning. Materials and Methods: A retrospective audit was conducted by a telephone survey of 101 patients who had third molar extractions performed under LA, IVS, or GA from January 2019 to June 2020 at a District General Hospital. The results were compared to a clinical standard identified as Cheng et al1. Data collection included mode of surgery, mode of anaesthesia, grade of clinician, assessment of difficulty, severity, and duration of symptoms. Results/Statistics: A total of 101 patients had 136 third molars extracted. Age range was 18-84 years. 44% extractions were under LA, 52% under GA, and 4% under IV sedation. 30% were simple extractions, 68% were surgical removals, 2% were unspecified. 89% extractions were performed by an Associate Specialist, 5% by a consultant, and 6% by unspecified grade of clinician. The rate of IDN injuries was 2.9% (n=4), higher than standard (0.3%). The rate of LN injuries was 0.7% (n=1), same as standard (0.7%). The 5 cases of neurosensory deficits are discussed in detail. Conclusions/Clinical Relevance: The rate of ID nerve injuries was higher than the standard. The rate of LN complications was lower than the standard.

Keywords: inferior dental nerve, lingual nerve, nerve injuries, third molars

Procedia PDF Downloads 91
1265 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 246