Search results for: glass transition temperature
2063 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes
Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou
Abstract:
The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study
Procedia PDF Downloads 1612062 Using Shape Memory Alloys for Structural Engineering Applications
Authors: Donatello Cardone
Abstract:
Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges
Procedia PDF Downloads 1002061 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index
Procedia PDF Downloads 2682060 Green Catalytic Conversion of Some Aromatic Alcohols to Acids by NiO₂ Nanoparticles (NPNPs) in Water
Authors: Abdel Ghany F. Shoair, Mai M. A. H. Shanab
Abstract:
The basic aqueous systems NiSO4.6H₂O / K₂S₂O₈ (PH= 14) or NiSO₄.6H₂O / KBrO₃ (PH = 11.5) were investigated for the catalytic conversion benzyl alcohol and some para-substituted benzyl alcohols to their corresponding acids in 75-97 % yield at room temperature. The active species was isolated and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction, EDX and FT-IR techniques and identified as NiO₂ nanoparticles (NPNPs). The SEM and TEM images of nickel peroxide samples show a fine spherical-like aggregation of NiO₂ molecules with a nearly homogeneous partial size and confirm the aggregation's size to be in the range of 2-3 nm. The yields, turnover (TO) and turn over frequencies (TOF) were calculated. It was noticed that the aromatic alcohols containing para-substituted electron donation groups gave better yields than those having electron-withdrawing groups. The optimum conditions for this catalytic reaction were studied using benzyl alcohol as a model. The mechanism of the catalytic conversion reaction was suggested, in which the produced (NPNPs) convert alcohols to acids in two steps through the formation of the corresponding aldehyde. The produced NiO, because of this conversion, is converted again to (NPNPs) by an excess of K₂S₂O₈ or KBrO₃. This catalytic cycle continues until all the substrate is oxidized.Keywords: Nickel, oxidation, catalysts, benzyl alcohol
Procedia PDF Downloads 812059 A Protocol of Procedures and Interventions to Accelerate Post-Earthquake Reconstruction
Authors: Maria Angela Bedini, Fabio Bronzini
Abstract:
The Italian experiences, positive and negative, of the post-earthquake are conditioned by long times and structural bureaucratic constraints, also motivated by the attempt to contain mafia infiltration and corruption. The transition from the operational phase of the emergency to the planning phase of the reconstruction project is thus hampered by a series of inefficiencies and delays, incompatible with the need for rapid recovery of the territories in crisis. In fact, intervening in areas affected by seismic events means at the same time associating the reconstruction plan with an urban and territorial rehabilitation project based on strategies and tools in which prevention and safety play a leading role in the regeneration of territories in crisis and the return of the population. On the contrary, the earthquakes that took place in Italy have instead further deprived the territories affected of the minimum requirements for habitability, in terms of accessibility and services, accentuating the depopulation process, already underway before the earthquake. The objective of this work is to address with implementing and programmatic tools the procedures and strategies to be put in place, today and in the future, in Italy and abroad, to face the challenge of the reconstruction of activities, sociality, services, risk mitigation: a protocol of operational intentions and firm points, open to a continuous updating and implementation. The methodology followed is that of the comparison in a synthetic form between the different Italian experiences of the post-earthquake, based on facts and not on intentions, to highlight elements of excellence or, on the contrary, damage. The main results obtained can be summarized in technical comparison cards on good and bad practices. With this comparison, we intend to make a concrete contribution to the reconstruction process, certainly not only related to the reconstruction of buildings but privileging the primary social and economic needs. In this context, the recent instrument applied in Italy of the strategic urban and territorial SUM (Minimal Urban Structure) and the strategic monitoring process become dynamic tools for supporting reconstruction. The conclusions establish, by points, a protocol of interventions, the priorities for integrated socio-economic strategies, multisectoral and multicultural, and highlight the innovative aspects of 'inversion' of priorities in the reconstruction process, favoring the take-off of 'accelerator' interventions social and economic and a more updated system of coexistence with risks. In this perspective, reconstruction as a necessary response to the calamitous event can and must become a unique opportunity to raise the level of protection from risks and rehabilitation and development of the most fragile places in Italy and abroad.Keywords: an operational protocol for reconstruction, operational priorities for coexistence with seismic risk, social and economic interventions accelerators of building reconstruction, the difficult post-earthquake reconstruction in Italy
Procedia PDF Downloads 1292058 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir
Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder
Abstract:
22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality
Procedia PDF Downloads 2942057 Copper Sulphate Effect on Cyprinus Carpio Common Fish Parasites
Authors: Jawdhari Abdulhusein, Dan Mihăilescu, Cristian-Emilian Pop, Nicolai Crăciun
Abstract:
Cyprinus Carpio adult specimens were captured from a single spot location from the Danube River and transported to the Laboratory of Faculty of Biology, University of Bucharest. The specimens were measured, weighed and randomly divided in five groups for later Copper Sulphate (CuSO4) exposure, as well as one control group. From the control group, 3 specimens were immediately sacrificed and microscopically inspected for parasite’s presence in the gills. During the histological inspection of the control group specimens, Ichthyophthiriusmultifiliis, Gyrodactylu ssp., MyxobolusOviforis, and Trichodinacottidarumwere abundantly identified in the gills. The exposure to a single dose of CuSO4 per group took place for 7 days under controlled conditions: water alkalinity ≈ 100 mg/L, temperature 23–24 °C, oxygenation 7.40–7.80 mg/L, and pH 6.10–6.40, the parameters were monitored on an hourly basis and adjusted when needed. After the exposure, all specimens were sacrificed, and the gill tissues were inspected. It was found that concentrations of 0.10, 0.25 and 0.30 ppm of CuSO4 did not affect the presence of parasites, as for 0.40 ppm of CuSO4 it significantly affected onlyIchthyophthiriusmultifiliisandMyxobolusOviforis, while concentration 0.50 ppm of CuSO4 (≈0.20 ppm of Cu2+) eliminated all 4 parasites species previously present in the fish gills, also, there were some histopathological changes to the gills tissue. These findings suggest that low concentrations of CuSO4 treatment for fish parasites are a safe and economical option if used correctly for a brief length of time.Keywords: copper sulphate, cyprinus carpio, parasites, danube river
Procedia PDF Downloads 1422056 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins
Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа
Abstract:
Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins
Procedia PDF Downloads 2002055 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices
Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu
Abstract:
Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.Keywords: adsorption, biochar, imidacloprid, soil, tillage
Procedia PDF Downloads 1542054 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 3522053 Production, Quality Control, and Biodistribution Studies of 141ce-Edtmp as a Potential Bone Pain Palliation Agent
Authors: Fatemeh Soltani, Simindokht Shirvani Arani, Ali Bahrami Samani, Mahdi Sadeghi, Kamal Yavari
Abstract:
Cerium-141 [T1/2 = 32.501 days, Eβ (max) = 0.580 (29.8%) and 0.435(70.2%) MeV, Eγ=145.44 (48.2%) keV] possesses radionuclidic properties suitable for use in palliative therapy of bone metastases. 141Ce also has gamma energy of 145.44 keV, which resembles that of 99mTc. Therefore, the energy window is adjustable on the Tc-99m energy because of imaging studies. 141Ce can be produced through a relatively easy route that involves thermal neutron bombardment on natural CeO2 in medium flux research reactors (4–5×1013 neutrons/cm2•s). The requirement for an enriched target does not arise. Ethylenediamine tetramethylene phosphonic acid (EDTMP) was synthesized and radiolabeled with 141Ce. Complexation parameters were optimized to achieve maximum yields (>99%). The radiochemical purity of 141Ce-EDTMP was evaluated by radio-thin layer chromatography. The stability of the prepared formulation was monitored for one week at room temperature, and results showed that the preparation was stable during this period (>99%). Biodistribution studies of the complexes carried out in wild-type rats exhibited significant bone uptake with rapid clearance from blood. The properties of produced 141Ce-EDTMP suggest applying a new efficient bone pain palliative therapeutic agent to overcome metastatic bone pains.Keywords: bone pain palliative, cerium-141, EDTMP, radiopharmaceutical
Procedia PDF Downloads 4952052 Polyampholytic Resins: Advances in Ion Exchanging Properties
Authors: N. P. G. N. Chandrasekara, R. M. Pashley
Abstract:
Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.Keywords: capacity, ion exchange, polyampholytic resin, regeneration
Procedia PDF Downloads 3792051 Smart Food Packaging Using Natural Dye and Nanoclay as a Meat Freshness Indicator
Authors: Betina Luiza Koop, Lenilton Santos Soares, Karina Cesca, Germán Ayala Valencia, Alcilene Rodrigues Monteiro
Abstract:
Active and smart food packaging has been studied to control and extend the food shelf-life. However, active compounds such as anthocyanins (ACNs) are unstable to high temperature, light, and pH changes. Several alternatives to stabilize and protect the anthocyanins have been researched, such as adsorption on nanoclays. Thus, this work aimed to stabilize anthocyanin extracted from jambolan fruit (Syzygium cumini), a noncommercial fruit, to development of food package sensors. The anthocyanin extract from jambolan pulp was concentrated by ultrafiltration and adsorbed on montmorillonite. The final biohybrid material was characterized by pH and color. Anthocyanins were adsorbed on nanoclay at pH 1.5, 2.5, and 3.5 and temperatures of 10 and 20 °C. The highest adsorption values were obtained at low pH at high temperatures. The color and antioxidant activity of the biohybrid was maintained for 60 days. A test of the color stability at pH from 1 to 13, simulating spoiled food using ammonia vapor, was performed. At pH from 1 to 5, the ACNs pink color was maintained, indicating that the flavylium cation form was preserved. At pH 13, the biohybrid presented yellow color due to the ACN oxidation. These results showed that the biohybrid material developed has potential application as a sensor to indicate the freshness of meat products.Keywords: anthocyanin, biohybrid, food, smart packaging
Procedia PDF Downloads 772050 An Investigation of Passivation Technology in Stainless Steel Alloy
Authors: Feng-Tsai Weng, Rick Wang, Yan-Cong Liao
Abstract:
Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours.Keywords: passivation, alkaline-acid-alkaline, stainless steel, salt spray test
Procedia PDF Downloads 3662049 Analyzing of Good Dairy Practices in Dairy Farm Management in Sleman, Daerah Istimewa Yogyakarta: The Effect of Good Management in Milk Production
Authors: Dandi Riswanto, Mahendra Wahyu Eka Pradana, Hutomo Abdurrohman
Abstract:
The dairy farm has strategic roles in meeting the demand of foods. Sleman Regency is a central dairy production in Daerah Istimewa Yogyakarta. Sleman district has a population of 3954 heads dairy cattle with an environmental temperature of 22 to 35 degrees Celsius and humidity 74 to 87% which makes a good location for a dairy cattle farm. The dairy cattle that are kept by the majority of the Friesian Holstein Crossbreed are predominantly reared by conventional management. Sleman Regency accounts for 7.3% of national milk production. Factors influencing include genetic, environmental, and management. The purpose of this research was to determine the effect of Good Dairy Farming Practices (GDFP) application on milk production in Sleman Regency. The data collection was conducted in January 2017 until May 2017 using survey and interviews methods at 5 locations of dairy farms selected randomly. Data were analyzed with the chi-square test. The result of this research showed that GDFP point was management 1,47 points (less good). The result showed that Good Dairy Farming Practices (GDFP) has a positive effect on milk production.Keywords: dairy cattle, GDFP, milk production, Sleman regency
Procedia PDF Downloads 2232048 Associated Mycoflora AF Mucuna Sloanei Seeds and Their Effects on Nutritional and Phytochemical Contents of the Seeds
Authors: U.N. Emiri, E. Moroyei
Abstract:
Mycoflora associated with the seed rot disease of Mucuna sloanei and their effects on nutrient and phytochemical composition of the seeds were investigated. The fungal pathogens implicated in the seed rot disease were Rhizopus stolonifer, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum. The fungal isolates were aseptically inoculated into healthy M. Sloanei seeds and incubated for 7 days at room temperature of 25 ± 30c. The results of the proximate and mineral analysis in mg/100g of fungal infected and non-infected (control) seeds that were carried out revealed that there was an increase in Moisture and Carbohydrate content of the fungal infected seeds relative to the non-infected seeds (control). However, there was a decrease in Ash, Fibre, Lipid, and Protein content of the fungal infected seeds relative to the non-infected (control). It was observed that moisture had increased from 10.50 ± 0.16 in the non-infected seeds to 17.60 ± 0.20 in the infected samples and Carbohydrate content had also increased from 49.6 ± 0.25 in the non-infected to 52.50 ± 0.29 in the infected seeds. The following parameters decreased in the infected than in the non-infected seeds. They include Ash 2.60 ± 0.12, Crude fibre 1.9 ± 0.08, Lipid 6.50 ± 0.16, and Protein content 18.50 ± 0.06. Similarly, Calcium 2.50 ± 0.12, Phosphorus 1.80 + 0.12 and Potassium 1.80 + 0.09 increased in the infected than in the non-infected seed, while iron 0.20 ± 0.05, Sodium 0.02 ± 0.01 and Magnesium 0.06 ± 0.02 decreased in the infected seeds. All phytochemical contents analyzed increased in the infected seeds viz Tannim 0.50 ± 0.12, Oxalate 1.60 ± 0.05, Hydrogen cyanide 1.82 ± 0.06, and Saponin 2.50+0.28. However, the nutrient compositions and Phytochemical between the infected and non-infected seeds are not significantly different (p > 0.05).Keywords: Mycoflora, mucuna sloanei, seeds, phytochemical, nutrient composition
Procedia PDF Downloads 1582047 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis
Authors: Hana Gebremariam Liliso
Abstract:
This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion
Procedia PDF Downloads 622046 Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01
Authors: Aisami A., Z. A. Adamu, Lawan Bulama
Abstract:
Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation.Keywords: crude oil degradation, providencia sp., bioremediation, hydrocarbon utilization, environmental pollution.
Procedia PDF Downloads 482045 Comparative Study of Wear and Friction Behavior of Tricalcium Phosphate-Fluorapatite Bioceramic
Authors: Rym Taktak, Achwek Elghazel, Jamel Bouaziz
Abstract:
In the present work, we explored the potential of tribological behavior of tricalcium phosphate-Fluorapatite (β Tcp-Fap) bioceramic which has attracted considerable attention for orthopedics and dental applications. The approximate representatives Fap-βTcp were respectively [{13.26 wt%, 86.74 wt%} {19.9 wt%, 80.1 wt%},{ 26.52 wt%, 73.48 wt%}, {33.16 wt%, 66.84 wt%} and {40 wt%, 60 wt%}. The effects of Fluorapatite additives on friction and wear behavior were studied and discussed. The wear test was conducted using pion-disk tribometer at room temperature under dry condition using a constant sliding speed of 0,063 m/s, and three loads 3, 5 and 8 N. The wear rate and friction coefficient of β Tcp with different additive amounts were compared. An Alumina ball specimens were used as the pin and flat surface β Tcp-Fap specimens as the antagonist counterface. The results show a huge difference between the wear rate of β TCP samples and the other β TCP-Fap composites for all normal forces applied. This result shows the beneficial effect of fluorapatite on the tribological behavior of the β TCP. Moreover, we note that β Tcp-26% Fap specimens exhibit, under dry condition, the lower friction coefficient and the smaller wear rate than other biocomposites. Thereby, the friction and wear behavior is influenced by the addition of fluorapatite, the applied normal force, and the sliding velocity. To extend the understanding of the wear process, the surface topography of β Tcp-26% Fap specimens and the wear track obtained during the wear tests were studied using a surface profilometer, optical microscopy, and scanning electron microscopy.Keywords: alumina, bioceramic, friction and wear test, tricalcium phosphate
Procedia PDF Downloads 2352044 Preventing Discharge to No Fixed Address-Youth (NFA-Y)
Authors: Cheryl Forchuk, Sandra Fisman, Steve Cordes, Dan Catunto, Katherine Krakowski, Melissa Jeffrey, John D’Oria
Abstract:
The discharge of youth aged 16-25 from hospital into homelessness is a prevalent issue despite research indicating social, safety, health and economic detriments on both the individual and community. Lack of stable housing for youth discharged into homelessness results in long-term consequences, including exacerbation of health problems and costly health care service use and hospital readmission. People experiencing homelessness are four times more likely to be readmitted within one month of discharge and hospitals must spend $2,559 more per client. Finding safe housing for these individuals is imperative to their recovery and transition back to the community. People discharged from hospital to homelessness experience challenges, including poor health outcomes and increased hospital readmissions. Youth are the fastest-growing subgroup of people experiencing homelessness in Canada. The needs of youth are unique and include supports related to education, employment opportunities, and age-related service barriers. This study aims to identify the needs of youth at risk of homelessness by evaluating the efficacy of the “Preventing Discharge to No Fixed Address – Youth” (NFA-Y) program, which aims to prevent youth from being discharged from hospital into homelessness. The program connects youth aged 16-25 who are inpatients at London Health Sciences Centre and St. Joseph’s Health Care London to housing and financial support. Supports are offered through collaboration with community partners: Youth Opportunities Unlimited, Canadian Mental Health Association Elgin Middlesex, City of London Coordinated Access, Ontario Works, and Salvation Army’s Housing Stability Bank. This study was reviewed and approved by Western University’s Research Ethics Board. A series of interviews are being conducted with approximately ninety-three youth participants at three time points: baseline (pre-discharge), six, and twelve months post-discharge. Focus groups with participants, health care providers, and community partners are being conducted at three-time points. In addition, administrative data from service providers will be collected and analyzed. Since homelessness has a detrimental effect on recovery, client and community safety, and healthcare expenditure, locating safe housing for psychiatric patients has had a positive impact on treatment, rehabilitation, and the system as a whole. If successful, the findings of this project will offer safe policy alternatives for the prevention of homelessness for at-risk youth, help set them up for success in their future years, and mitigate the rise of the homeless youth population in Canada.Keywords: youth homelessness, no-fixed address, mental health, homelessness prevention, hospital discharge
Procedia PDF Downloads 1082043 Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus
Authors: Ryoko Yoshida, Jyunpei Yoshida, Hua Fang Yu, Yasushi Sasaki, Tetsuya Nagasaka
Abstract:
Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.Keywords: carbothermic reduction, phosphoric acid, dephosphorization slags, yellow phosphorus
Procedia PDF Downloads 1262042 Characterization Transesterification Activity on Thermostable Lipase (LK1) From Local Isolate
Authors: Luxy Grebers Swend Sinaga, Akhmaloka
Abstract:
The global energy crisis, triggered by declining fossil The global energy crisis, triggered by declining fossil fuel reserves and exacerbated by population growth and increasing energy demand, was driven the development of renewable energy sources. One of the green energy alternatives being developed is biodiesel. Transesterification is at the core of biodiesel production, where fatty acids in oil are converted into methyl esters with the aid of a catalyst. Lipases exhibit high activity and stability during catalysis, especially under harsh conditions. Lipase (Lk1) isolated from organic waste compost at the Bandung Institute of Technology, Bandung, West Java, shows promising potential in this field. The thermostable lipase was purified using Ni-NTA affinity chromatography, followed by SDS-PAGE analysis for purity confirmation. Characterizing the transesterification activity of Lk1 is essential for assessing its effectiveness in converting oil into biodiesel, including methyl esters. The results of this study showed that Lk1 exhibited the highest activity on a methyl palmitate substrate, with an optimum temperature of 60°C, very stable activity in the non-polar solvent n-hexane, and was able to maintain its optimum activity for up to 1 hour. These characters make Lk1 highly suitable for biodiesel production, as it meets the main criteria for the transesterification process in producing renewable energy.Keywords: biodiesel, lipase Lk1, transesterification, renewable energy, thermostability
Procedia PDF Downloads 312041 Purification of Bilge Water by Adsorption
Authors: Fatiha Atmani, Lamia Djellab, Nacera Yeddou Mezenner, Zohra Bensaadi
Abstract:
Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal.Keywords: adsorption, bilge water, eggshells and kinetics, equilibrium and kinetics
Procedia PDF Downloads 3582040 Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil
Authors: Kaustuvmani Patowary, Suresh Deka
Abstract:
Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants.Keywords: petroleum hydrocarbon, hydrocarbon contamination, bioremediation, biosurfactant, rhamnolipid
Procedia PDF Downloads 3572039 Effect of a Nutritional Supplement Containing Euterpe oleracea Mart., Inulin, Phaseolus vulgaris and Caralluma fimbriata in Persons with Metabolic Syndrome
Authors: Eduardo Cabrera-Rode, Janet Rodriguez, Aimee Alvarez, Ragmila Echevarria, Antonio D. Reyes, Ileana Cubas-Duenas, Silvia E. Turcios, Oscar Diaz-Diaz
Abstract:
Obex is a nutritional supplement to help weight loss naturally. In addition, this supplement has a satiating effect that helps control the craving to eat between meals. The purpose of this study was to evaluate the effect of Obex in the metabolic syndrome (MS). This was an open label pilot study conducted in 30 patients with MS and ages between 29 and 60 years old. Participants received Obex, at a dose of one sachet before (30 to 45 minutes) the two main meals (lunch and dinner) daily (mean two sachets per day) for 3 months. The content of the sachets was dissolved in a glass of water or fruit juice. Obex ingredients: Açai (Euterpe oleracea Mart.) berry, inulin, Phaseolus vulgaris, Caralluma fimbriata, inositol, choline, arginine, ornitine, zinc sulfate, carnitine fumarate, methionine, calcium pantothenate, pyridoxine and folic acid. In addition to anthropometric measures and blood pressure, fasting plasma glucose, total cholesterol, triglycerides and HDL-cholesterol and insulin were determined. Insulin resistance was assessed by HOMA-IR index. Three indirect indexes were used to calculate insulin sensitivity [QUICKI index (Quantitative insulin sensitivity check index), Bennett index and Raynaud index]. Metabolic syndrome was defined according to the Joint Interim Statement (JIS) criteria. The JIS criteria require at least three of the following components: (1) abdominal obesity (waist circumference major or equal major or equal 94 cm for men or 80 cm for women), (2) triglycerides major or equal 1.7 mmol/L, (3) HDL cholesterol minor 1.03 mmol/L for men or minor 1.30 mmol/L for women, (4) systolic/diastolic blood pressure major or equal 130/85mmHg or use antihypertensive drugs, and (5) fasting plasma glucose major or equal 5.6 mmol/L or known treatment for diabetes. This study was approved by the Ethical and Research Committee of the National Institute of Endocrinology, Cuba and conducted according to the Declaration of Helsinki. Obex is registered as a food supplement in the National Institute of Nutrition and Food, Havana, Cuba. Written consent was obtained from all patients before the study. The clinical trial had been registered at ClinicalTrials.gov. After three months of treatment, 43.3% (13/30) of participants decreased the frequency of MS. Compared to baseline, Obex significantly reduced body weight, BMI, waist circumference, and waist/hip ratio and improved HDL-c (p<0.0001) and in addition to lowering blood pressure (p<0.05). After Obex intake, subjects also have shown a reduction in fasting plasma glucose (p<0.0001) and insulin sensitivity was enhanced (p=0.001). No adverse effects were seen in any of the participants during the study. In this pilot study, consumption of Obex decreased the prevalence of MS due to the improved selected components of the metabolic syndrome, indicating that further studies are warranted. Obex emerges as an effective and well tolerated treatment for preventing or delaying MS and therefore potential reduction of cardiovascular risk.Keywords: nutritional supplement, metabolic syndrome, weight loss, insulin resistance
Procedia PDF Downloads 3012038 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 1382037 Thermal Reduction of Perfect Well Identified Hexagonal Graphene Oxide Nano-Sheets for Super-Capacitor Applications
Authors: A. N. Fouda
Abstract:
A novel well identified hexagonal graphene oxide (GO) nano-sheets were synthesized using modified Hummer method. Low temperature thermal reduction at 350°C in air ambient was performed. After thermal reduction, typical few layers of thermal reduced GO (TRGO) with dimension of few hundreds nanometers were observed using high resolution transmission electron microscopy (HRTEM). GO has a lot of structure models due to variation of the preparation process. Determining the atomic structure of GO is essential for a better understanding of its fundamental properties and for realization of the future technological applications. Structural characterization was identified by x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) measurements. A comparison between exper- imental and theoretical IR spectrum were done to confirm the match between experimentally and theoretically proposed GO structure. Partial overlap of the experimental IR spectrum with the theoretical IR was confirmed. The electrochemical properties of TRGO nano-sheets as electrode materials for supercapacitors were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) measurements. An enhancement in supercapacitance after reduction was confirmed and the area of the CV curve for the TRGO electrode is larger than those for the GO electrode indicating higher specific capacitance which is promising in super-capacitor applicationsKeywords: hexagonal graphene oxide, thermal reduction, cyclic voltammetry
Procedia PDF Downloads 4972036 De-Securitizing Identity: Narrative (In)Consistency in Periods of Transition
Authors: Katerina Antoniou
Abstract:
When examining conflicts around the world, it is evident that the majority of intractable conflicts are steeped in identity. Identity seems to be not only a causal variable for conflict, but also a catalytic parameter for the process of reconciliation that follows ceasefire. This paper focuses on the process of identity securitization that occurs between rival groups of heterogeneous collective identities – ethnic, national or religious – as well as on the relationship between identity securitization and the ability of the groups involved to reconcile. Are securitized identities obstacles to the process of reconciliation, able to hinder any prospects of peace? If the level to which an identity is securitized is catalytic to a conflict’s discourse and settlement, then which factors act as indicators of identity de-securitization? The level of an in-group’s identity securitization can be estimated through a number of indicators, one of which is narrative. The stories, views and stances each in-group adopts in relation to its history of conflict and relation with their rival out-group can clarify whether that specific in-group feels victimized and threatened or safe and ready to reconcile. Accordingly, this study discusses identity securitization through narrative in relation to intractable conflicts. Are there conflicts around the world that, despite having been identified as intractable, stagnated or insoluble, show signs of identity de-securitization through narrative? This inquiry uses the case of the Cyprus conflict and its partitioned societies to present official narratives from the two communities and assess whether these narratives have transformed, indicating a less securitized in-group identity for the Greek and Turkish Cypriots. Specifically, the study compares the official historical overviews presented by each community’s Ministry of Foreign Affairs website and discusses the extent to which the two official narratives present a securitized collective identity. In addition, the study will observe whether official stances by the two communities – as adopted by community leaders – have transformed to depict less securitization over time. Additionally, the leaders’ reflection of popular opinion is evaluated through recent opinion polls from each community. Cyprus is currently experiencing renewed optimism for reunification, with the leaders of its two communities engaging in rigorous negotiations, and with rumors calling for a potential referendum for reunification to be taking place even as early as within 2016. Although leaders’ have shown a shift in their rhetoric and have moved away from narratives of victimization, this is not the case for the official narratives used by their respective ministries of foreign affairs. The study’s findings explore whether this narrative inconsistency proves that Cyprus is transitioning towards reunification, or whether the leaders are risking sending a securitized population to the polls to reject a potential reunification. More broadly, this study suggests that in the event that intractable conflicts might be moving towards viable peace, in-group narratives--official narratives in particular--can act as indicators of the extent to which rival entities have managed to reconcile.Keywords: conflict, identity, narrative, reconciliation
Procedia PDF Downloads 3292035 Explicit Numerical Approximations for a Pricing Weather Derivatives Model
Authors: Clarinda V. Nhangumbe, Ercília Sousa
Abstract:
Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives
Procedia PDF Downloads 882034 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures
Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo
Abstract:
The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.Keywords: biosilica, characterization, corn cob, sustainable cementitious materials
Procedia PDF Downloads 266