Search results for: enhanced properties
4320 A Combined High Gain-Higher Order Sliding Mode Controller for a Class of Uncertain Nonlinear Systems
Authors: Abderraouf Gaaloul, Faouzi Msahli
Abstract:
The use of standard sliding mode controller, usually, leads to the appearing of an undesirable chattering phenomenon affecting the control signal. Such problem can be overcome using a higher-order sliding mode controller (HOSMC) which preserves the main properties of the standard sliding mode and deliberately increases the control smoothness. In this paper, we propose a new HOSMC for a class of uncertain multi-input multi-output nonlinear systems. Based on high gain and integral sliding mode paradigms, the established control scheme removes theoretically the chattering phenomenon and provides the stability of the control system. Numerical simulations are developed to show the effectiveness of the proposed controller when applied to solve a control problem of two water levels into a quadruple-tank process.Keywords: nonlinear systems, sliding mode control, high gain, higher order
Procedia PDF Downloads 3284319 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate
Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares
Abstract:
Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility
Procedia PDF Downloads 6104318 Investigating the Nail Walls Performance in Jointed Rock Medium
Authors: Ibrahim Naeimifar, Omid Naeemifar
Abstract:
Evaluation of the excavation-induced ground movements is an important design aspect of support systems in urban areas. Geological and geotechnical conditions of an excavation area have significant effects on excavation-induced ground movements and the related damage. This paper is aimed at studying the performance of excavation walls supported by nails in jointed rock medium. The performance of nailed walls is investigated based on evaluating the excavation-induced ground movements. For this purpose, a set of calibrated 2D finite element models is developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process. The results of this paper highlight effects of different parameters such as joint inclinations, the anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails.Keywords: finite element, jointed rock, nailing, performance
Procedia PDF Downloads 2914317 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 1294316 Exploring an Exome Target Capture Method for Cross-Species Population Genetic Studies
Authors: Benjamin A. Ha, Marco Morselli, Xinhui Paige Zhang, Elizabeth A. C. Heath-Heckman, Jonathan B. Puritz, David K. Jacobs
Abstract:
Next-generation sequencing has enhanced the ability to acquire massive amounts of sequence data to address classic population genetic questions for non-model organisms. Targeted approaches allow for cost effective or more precise analyses of relevant sequences; although, many such techniques require a known genome and it can be costly to purchase probes from a company. This is challenging for non-model organisms with no published genome and can be expensive for large population genetic studies. Expressed exome capture sequencing (EecSeq) synthesizes probes in the lab from expressed mRNA, which is used to capture and sequence the coding regions of genomic DNA from a pooled suite of samples. A normalization step produces probes to recover transcripts from a wide range of expression levels. This approach offers low cost recovery of a broad range of genes in the genome. This research project expands on EecSeq to investigate if mRNA from one taxon may be used to capture relevant sequences from a series of increasingly less closely related taxa. For this purpose, we propose to use the endangered Northern Tidewater goby, Eucyclogobius newberryi, a non-model organism that inhabits California coastal lagoons. mRNA will be extracted from E. newberryi to create probes and capture exomes from eight other taxa, including the more at-risk Southern Tidewater goby, E. kristinae, and more divergent species. Captured exomes will be sequenced, analyzed bioinformatically and phylogenetically, then compared to previously generated phylogenies across this group of gobies. This will provide an assessment of the utility of the technique in cross-species studies and for analyzing low genetic variation within species as is the case for E. kristinae. This method has potential applications to provide economical ways to expand population genetic and evolutionary biology studies for non-model organisms.Keywords: coastal lagoons, endangered species, non-model organism, target capture method
Procedia PDF Downloads 1934315 Cash Management in Response to Inflationary Pressures: An Innovative Approach Towards Enhanced Corporate Resilience in Morocco
Authors: Badrane Nohayla
Abstract:
In a global economic context marked by growing instability and persistent inflationary pressures, Moroccan companies are facing unprecedented challenges. With galloping inflation exerting increasing pressure on the Moroccan economy, it is becoming crucial for companies to rethink their cash management approach. In fact, this complex economic situation, marked by rising commodity costs, currency volatility and market uncertainty, requires an innovative strategic response. In this regard, the present article delves into how innovation in cash management can play a pivotal role in mitigating the destabilising effects of inflation while bolstering the financial resilience of Moroccan companies. The primary objective of this paper is to illuminate the innovative strategies that can be adopted to counteract inflationary pressures. It focuses on exploring advanced financial and technological approaches, such as the use of artificial intelligence for financial forecasting, the automation of cash management processes, and the implementation of hedging strategies to safeguard against price and interest rate fluctuations. Furthermore, in the Moroccan context, where recent inflation has heightened economic vulnerabilities, these innovative strategies are vital for optimising performance and ensuring businesses survival. By integrating these cutting-edge practices into their cash management frameworks, Moroccan companies can not only mitigate the immediate impacts of inflation on their operations but also position themselves more securely to withstand future challenges. In doing so, they enhance their capacity to navigate an uncertain economic landscape and seize sustainable growth opportunities, thereby strengthening their long-term resilience. It is worth noting that embracing innovative cash management is not merely a response to current economic challenges but a strategic investment in future-proofing businesses. By leveraging innovation, Moroccan companies can develop adaptive capabilities that will enhance their resilience to future crises, whether these stem from economic fluctuations or other external shocks. Thus, innovation emerges not just as an adjustment tool but as a critical strategic driver for thriving in a future where economic uncertainty may well become the norm.Keywords: innovative cash management, inflation, resilience, financial risks, moroccan companies
Procedia PDF Downloads 104314 Quality of Low Fat Traditional Pork Sausage Containing Transglutaminase
Authors: Jiraporn Burakorn, Pran Pinthong, Supida Hutabaedya
Abstract:
Commercial traditional pork sausages (Moo Yaw) were produced by added more than 30% of pork fat for appetite customer. The pork sausages texture were softness, firmness, juiciness and smooth. If the pork sausages contained less fat, their textures were hardness, dryness and incoherence. This research investigated production of low fat traditional pork sausage containing transglutaminase for improved its sensory properties and nutritive values. The enzyme pork sausage composed of transglutaminase, soybean cake, rice bran oil and other ingredients. Consumer acceptance test was done by comparing the enzyme pork sausage with the 3 commercial pork sausage with 95 consumer. The enzyme pork sausage was accepted 92.6% and was preferred in all attributes over the 3 commercial pork sausages such as appearance, color, flavor, taste, firmness and overall liking. The enzyme pork sausage was high protein but low total calories, calories from fat, total fat, saturated fat, cholesterol and carbohydrate. The enzyme pork sausage was lower calorie (90 kcal) than the commercial reference pork sausage (150 kcal) 64%. The morphological texture of the enzyme pork sausage was smooth and consistency when analyzed by SEM.Keywords: low fat, Moo Yaw, pork sausage, transglutaminase
Procedia PDF Downloads 2384313 Rapid and Long-term Alien Language Analysis - Forming Frameworks for the Interpretation of Alien Communication for More Intelligent Life
Authors: Samiksha Raviraja, Junaid Arif
Abstract:
One of the most important abilities in species is the ability to communicate. This paper proposes steps to take when and if aliens came in contact with humans, and how humans would communicate with them. The situation would be a time-sensitive scenario, meaning that communication is at the utmost importance if such an event were to happen. First, humans would need to establish mutual peace by conveying that there is no threat to the alien race. Second, the aliens would need to acknowledge this understanding and reciprocate. This would be extremely difficult to do regardless of their intelligence level unless they are very human-like and have similarities to our way of communicating. The first step towards understanding their mind is to analyze their level of intelligence - Level 1-Low intelligence, Level 2-Human-like intelligence or Level 3-Advanced or High Intelligence. These three levels go hand in hand with the Kardashev scale. Further, the Barrow scale will also be used to categorize alien species in hopes of developing a common universal language to communicate in. This paper will delve into how the level of intelligence can be used toward achieving communication with aliens by predicting various possible scenarios and outcomes by proposing an intensive categorization system. This can be achieved by studying their Emotional and Intelligence Quotient (along with technological and scientific knowledge/intelligence). The limitations and capabilities of their intelligence must also be studied. By observing how they respond and react (expressions and senses) to different kinds of scenarios, items and people, the data will help enable good categorisation. It can be hypothesised that the more human-like aliens are or can relate to humans, the more likely it is that communication is possible. Depending on the situation, either human can teach aliens a human language, or humans can learn an alien language, or both races work together to develop a mutual understanding or mode of communication. There are three possible ways of contact. Aliens visit Earth, or humans discover aliens while on space exploration or through technology in the form of signals. A much rarer case would be humans and aliens running into each other during a space expedition of their own. The first two possibilities allow a more in-depth analysis of the alien life and enhanced results compared. The importance of finding a method of talking with aliens is important in order to not only protect Earth and humans but rather for the advancement of Science through the shared knowledge between the two species.Keywords: intelligence, Kardashev scale, Barrow scale, alien civilizations, emotional and intelligence quotient
Procedia PDF Downloads 774312 Research Attitude: Its Factor Structure and Determinants in the Graduate Level
Authors: Janet Lynn S. Montemayor
Abstract:
Dropping survivability and rising drop-out rate in the graduate school is attributed to the demands that come along with research-related requirements. Graduate students tend to withdraw from their studies when confronted with such requirements. This act of succumbing to the challenge is primarily due to a negative mindset. An understanding of students’ view towards research is essential for teachers in facilitating research activities in the graduate school. This study aimed to develop a tool that accurately measures attitude towards research. Psychometric properties of the Research Attitude Inventory (RAIn) was assessed. A pool of items (k=50) was initially constructed and was administered to a development sample composed of Masters and Doctorate degree students (n=159). Results show that the RAIn is a reliable measure of research attitude (k=41, αmax = 0.894). Principal component analysis using orthogonal rotation with Kaiser normalization identified four underlying factors of research attitude, namely predisposition, purpose, perspective, and preparation. Research attitude among the respondents was analyzed using this measure.Keywords: graduate education, principal component analysis, research attitude, scale development
Procedia PDF Downloads 1974311 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs
Authors: Intisar, Khalifa, Salim, Al Busaidi
Abstract:
Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.Keywords: polymer, heavy oil, low salinity, COBR interactions
Procedia PDF Downloads 964310 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 1654309 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell
Authors: A. Bouloufa, F. Khaled, K. Djessas
Abstract:
This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.Keywords: optical window, thin film, solar cell, efficiency
Procedia PDF Downloads 2904308 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control
Authors: M. Ezati Kooshki , H. Pourmohamad
Abstract:
Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis
Procedia PDF Downloads 4114307 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks
Authors: Guoyang Fu, Wei Yang, Chun-Qing Li
Abstract:
The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity
Procedia PDF Downloads 2524306 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking
Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu
Abstract:
Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.Keywords: Chirality, detection, molecule, spin
Procedia PDF Downloads 964305 Development and Characterization of Mesoporous Silica Nanoparticles of Quercetin in Skin Cancer
Authors: Khusboo Agrawal, S. Saraf
Abstract:
Quercetin, a flavonol provides a cellular protection against UV induced oxidative damages due to its excellent free radical scavenging activity and direct pro-apoptopic effect on tumor cells. However, its topical use is limited due to its unfavorable physicochemical properties. The present study was aimed to evaluate the potential of mesoporous silica nanoparticles as topical carrier system for quercetin delivery. Complexes of quercetin with mesoporous silica was prepared with different weight ratios and characterized by thermo gravimetric analysis, X-ray diffraction, high resolution TEM, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry The protective effect of this vehicle on UV-induced degradation of the quercetin was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated by using Franz diffusion cells. The immobilization of Quercetin in mesoporous silica nanoparticles (MSNs) increased the stability without undermining the antioxidant efficacy.Keywords: cancer, MSNs, quercetin, topical delivery
Procedia PDF Downloads 3124304 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities
Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang
Abstract:
Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles
Procedia PDF Downloads 1954303 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing
Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie
Abstract:
Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.Keywords: cathodic plasma electrolysis, friction, lubrication, plasma surface texturing
Procedia PDF Downloads 1384302 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System
Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao
Abstract:
Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket
Procedia PDF Downloads 2114301 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 494300 Determination of the Optimal Content of Commercial Superplasticizer Additives in Cements with Calcined Clay
Authors: Amanda R. Teixeira, João H. S. Rego, Gabriel F. S. Brito, Fabricio M. Silva
Abstract:
The use of superplasticizer additives has provided several advances for the civil construction industry, enabling gains in the rheological behavior and mechanical properties of cementitious matrices. These compounds act at the solid-liquid interface of colloidal suspensions of cement pastes, preventing agglomeration of the particles. Although the use in the concrete industry is wide, the mechanisms of dispersion of concrete admixtures composed of polycarboxylate in cement with supplementary cementitious materials have ample opportunity to be investigated, providing the attainment of increasingly compatible and efficient cement-addition-additive systems. The cements used in the research are Portland Cement CPV and two cements Portland Cement Composite (CPIV) with calcined clay contents of 20% and 28% and three commercial additives based on polycarboxylate. The performance of the additives and obtaining the optimal content was determined by the Marsh Cone test and spread by Mini-Slump.Keywords: calcined clay, composite cements, superplasticizer additives, polycarboxylate
Procedia PDF Downloads 1104299 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme
Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇
Abstract:
Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.Keywords: glutathione reductase, antimalaria, inhibitor, enzyme
Procedia PDF Downloads 2734298 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE
Authors: Abdulla Al Hmoudi
Abstract:
The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.Keywords: community, early warning system, emergency management, UAE
Procedia PDF Downloads 1464297 Antidiabetic and Antihyperlipaemic Effects of Aqueous Neem (Azadirachta Indica) Extract on Alloxan Diabetic Rabbits
Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed
Abstract:
Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models and their effects confirmed. Neem or Margose (Azadirachta Indica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic and many other properties. This paper deals with a comparative study of the effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day), as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly, decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL(very low-density lipoproteins) and LDL(low-density lipoproteins) but significantly increased (P<0.05) the concentration of HDL(high-density lipoprotein). The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.Keywords: neem, hypoglycemic, hypolipidemic, cholesterol
Procedia PDF Downloads 2754296 Outdoor Thermal Comfort Strategies: The Case of Cool Facades
Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa
Abstract:
Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling
Procedia PDF Downloads 1004295 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: pantograph models, phase plots, structural health monitoring, damage detection
Procedia PDF Downloads 3654294 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition
Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake
Abstract:
Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond
Procedia PDF Downloads 3064293 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 1544292 Morphological Properties of Soil Profile of Vineyard of Bangalore North (GKVK Farm), Karnataka, India
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
A profile was dug at the University of Agricultural Sciences, Bangalore, where grapes were intensively cultivated for 25 years on the dimension of 1.5 × 1.5 × 1.5 m. Demarcation was done on the basis of texture, structure, colour, and the details like depth, texture, colour, consistency, rock fragments, presence of mottles, and structure were recorded and studied according to standard performa of soil profile description. Horizons noticed were Ap, Bt1, Bt2, Bt3, Bt4C, Bt5C and BC with respective depths of 0-13, 13-37, 37-60, 60-78, 78-104, 104-130 and 130-151+ cm. The reddish-brown colour was noticed in Ap, Bt1, and Bt2 horizons. The sub-angular blocky structure was observed in all the layers with slightly acid in reaction. Clear and abrupt smooth boundaries were present between two respective layers with clayey texture in all the horizons except the Ap horizon, which was clay loam in texture. Variegated soil colours and iron concretions were observed in Bt4, Bt5, and BC horizons. Clay skins were observed in Bt and BC horizons. Soils were of highly friable consistency for grapes cultivation.Keywords: soil morphology, horizons, clay skins, consistency, vineyards
Procedia PDF Downloads 1404291 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 266