Search results for: emergency medical services information system (EMSIS)
23251 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 30323250 Potential Usefulness of Video Lectures as a Tool to Improve Synchronous and Asynchronous the Online Education
Authors: Omer Shujat Bhatti, Afshan Huma
Abstract:
Online educational system were considered a great opportunity for distance learning. In recent days of COVID19 pandemic, it enable the continuation of educational activities at all levels of education, from primary school to the top level universities. One of the key considered element in supporting the online educational system is video lectures. The current research explored the usefulness of the video lectures delivered to technical students of masters level with a focus on MSc Sustainable Environmental design students who have diverse backgrounds in the formal educational system. Hence they were unable to cope right away with the online system and faced communication and understanding issues in the lecture session due to internet and allied connectivity issues. Researcher used self prepared video lectures for respective subjects and provided them to the students using Youtube channel and subject based Whatsapp groups. Later, students were asked about the usefulness of the lectures towards a better understanding of the subject and an overall enhanced learning experience. More than 80% of the students appreciated the effort and requested it to be part of the overall system. Data collection was done using an online questionnaire which was prior briefed to the students with the purpose of research. It was concluded that video lectures should be considered an integral part of the lecture sessions and must be provided prior to the lecture session, ensuring a better quality of delivery. It was also recommended that the existing system must be upgraded to support the availability of these video lectures through the portal. Teachers training must be provided to help develop quality video content ensuring that is able to cover the content and courses taught.Keywords: video lectures, online distance education, synchronous instruction, asynchronous communication
Procedia PDF Downloads 12123249 Identify the Risks Factors and Problems of Waste Management in Developing Countries as Hurdles
Authors: Zubair Ahmad
Abstract:
The aim of this study is to analyze the risks factors and issues with waste management in developing nations as barriers. Depending on their content and categorization, wastes are managed differently. Waste management strategies differ for liquid, solid, and organic wastes. The final stage of trash disposal entails procedures like burning, interment, recycling, and treatment. Due to the rising creation of solid waste, the growing urban population has a magnified impact on the environment and public health. All regions, but especially informal urban neighborhoods, tribal villages, and official rural settlements have a protracted backlog in waste services. Another significant impediment seen in the developing world is a lack of education and awareness of effective waste-management practices. Unauthorized dumpsites pose a serious risk to the environment since they could contain dangerous elements like radioactive, infectious, and toxic waste. Wealthier individuals are more inclined to think that their actions will have an impact on environmental problems and to act to address them. Waste managers need to take action to make sure the public is given information that is consistent with what they currently know. The results of the data analysis conducted with the aid of the various methodologies discussed in the preceding chapter are presented in this chapter by the researcher. Descriptive analysis has been used in research to determine whether or not there are relationships between variables and to determine the importance of the variables. According to a survey, there are no efforts being made to lessen the odor that garbage dump sites emit (in terms of treating or recycling the material placed at dumpsite) This might be the case since respondents only commented on the waste management conditions in their immediate surroundings and may not have fully understood the steps taken to resolve this issue.Keywords: risk factor of waste material, lack of awareness, developing countries struggles, waste management
Procedia PDF Downloads 7623248 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 12123247 WhatsApp Application and Challenges of Radio Broadcasting in Northern Nigeria: Special Interest on FRCN Kaduna
Authors: Aliyu Damri
Abstract:
This study analyzed the emergence of WhatsApp and how employees at the Federal Radio Corporation of Nigeria, Kaduna defined the concept base on their vast broadcasting experiences for over five decades and application of the phenomenon to the radio station. It also analyzed the nature, patterns, dimensions, features, challenges as well as the effects of WhatsApp as a social networking site with specific interest on the radio outlet. Also, the study identified how the radio organization responded to the challenges in an attempt to adapt to the new pattern of broadcasting characterized by many technological transformations. The study further explained in details such skills journalists need to function optimally using WhatsApp as well as the impacts of the WhatsApp on radio broadcasting. It used a combination of published materials, focus group discussion, in depth interviews and participant observation on the activities of the radio stations to address the research questions. The data generated provided insight to better understand the challenges posed to FRCN Kaduna as a result of WhatsApp application and how FRCN Kaduna responded to the challenges. It also provided information on the skills journalists need to function optimally in using WhatsApp application in the radio station. The interview and focus group discussion’s transcripts and the published materials were analyzed along thematic pattern related to the research questions in the study. The dominant response relied heavily on change in the radio station’s organizational and technical integration of newsrooms, the use of a multiskilled workforce, application of a flexible and user-friendly technology in all aspects of production, expansion of the station’s services in to new media such as internet and mobile phones as well as sharing of ideas across different units in the radio outfit.Keywords: broadcasting, challenge, northern Nigeria, radio, WhatsApp application
Procedia PDF Downloads 13523246 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 18223245 Design and Study of a Wind-Solar Hybrid System for Lighting Application
Authors: Nikhil V. Nayak, P. P. Revankar, M. B. Gorawar
Abstract:
Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most airfoil blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. This paper is aimed at studying and designing a wind-solar hybrid system for light load application. The tools like qblade and solidworks are used to model and analyze the wind turbine system, the material used for the blade and hub is balsa wood and the tower a lattice type. The expected power output is 100 W for an average wind speed of 4.5 m/s.Keywords: renewable energy, hybrid, airfoil blades, wind speeds, make-in-india, camber, QBlade, solidworks, balsa wood
Procedia PDF Downloads 31423244 Integrating Building Information Modeling into Facilities Management Operations
Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi
Abstract:
Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.Keywords: building information modeling, facility management, operational phase, building life cycle
Procedia PDF Downloads 15723243 Immunoglobulins and Importance in Ruminants
Authors: M. Akoz, O. B. Citil, I. Aydin
Abstract:
Colostrum secreted by the mammary glands after birth in the early days, a high proportion of fat, protein and ash containing a secretion containing low amounts of casein and lactose. Especially immunoglobulins contain high proportions. Maternal immunoglobulins own immune system to protect the newborn against neonatal disease until development are very important matter. However, colostrum is transferred to the offspring due to placental barrier in ruminants. Immunoglobulins are absorbed through the intestinal epithelium but absorption can vary under the influence of some factors. These factors are among the priority ones taking colostrum first time, amount, concentration, the metabolic status of the newborn. intestinal absorption of immunoglobulins occurs over the first 24 h high. Absorption from the gut after nine hours, 50% after 24 hours was only 11%. On the other hand pup's digestive system degrade the enzymes after 24 hours immunoglobulins. Bovine colostrum in the composition while basic immune IgG, IgA and IgM are also available. Total IgG in colostrum of ruminants, while in other species is a greater amount in blood serum.Keywords: immunoglobulin, ruminants, colostrum, immune system
Procedia PDF Downloads 26923242 Developing a Rational Database Management System (RDBMS) Supporting Product Life Cycle Appications
Authors: Yusri Yusof, Chen Wong Keong
Abstract:
This paper presents the implementation details of a Relational Database Management System of a STEP-technology product model repository. It is able support the implementation of any EXPRESS language schema, although it has been primarily implemented to support mechanical product life cycle applications. This database support the input of STEP part 21 file format from CAD in geometrical and topological data format and support a range of queries for mechanical product life cycle applications. This proposed relational database management system uses entity-to-table method (R1) rather than type-to-table method (R4). The two mapping methods have their own strengths and drawbacks.Keywords: RDBMS, CAD, ISO 10303, part-21 file
Procedia PDF Downloads 53723241 An Exploratory Study of the Effects of Head Movement on Engagement within a Telepresence Environment
Authors: B. S. Bamoallem, A. J. Wodehouse, G. M. Mair
Abstract:
Communication takes place not only through speech, but also by means of gestures such as facial expressions, gaze, head movements, hand movements and body posture, and though there has been rapid development, communication platforms still lack this type of behavior. We believe communication platforms need to fully achieve this verbal and non-verbal behavior in order to make interactions more engaging and more efficient. In this study we decided to focus our research on the head rather than any other body part as it is a rich source of information for speech-related movement Thus we aim to investigate the value of incorporating head movements into the use of telepresence robots as communication platforms; this will be done by investigating a system that reproduces head movement manually as closely as possible.Keywords: engagement, nonverbal behaviours, head movements, face-to-face interaction, telepresence robot
Procedia PDF Downloads 45623240 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 8423239 The Effect of Using Water Wireless Aqua Com System on the Development of Dolphin Kick Movements on the Female Swimming Team at the Faculty of Physical Education
Authors: Wisal Alrabadi
Abstract:
The study's goal was to see how the use of water wireless Aqua Com System and its accompanying music affected the Female Swimming Team at the Faculty of Physical Education's development of dolphin kick movements. To that end, a training program consisting of (12) training units spread out over four weeks, three units per week, was created and applied to a study sample of (10) students from the swimming pool enrolled in the first semester of the academic year 2022. Pre-measuring and timing the movements of dolphins kicking with and without fins above and below, measuring the water's surface over a distance of 25 meters. The results showed that there are statistically significant differences in favor of telemetry from the start within the limits of the area specified for a distance of 15 m after the comparison between the pre and post-measurement using the test (T) of the double samples, and this indicates the impact of the training program using the Aqua Com System in the swimming team(Female) at Faculty of Physical Education, and in light of this a set of recommendations was developed.Keywords: aqua com system training program, accompanying music, dolphin kick movements, swimming team female
Procedia PDF Downloads 15923238 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 13523237 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making
Authors: Hossein Afzali
Abstract:
Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty
Procedia PDF Downloads 19123236 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method
Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari
Abstract:
The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed
Procedia PDF Downloads 49323235 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 17223234 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment
Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues
Abstract:
Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.
Procedia PDF Downloads 21523233 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.Keywords: call center agents, fatigue, skin color detection, face recognition
Procedia PDF Downloads 29823232 Accelerated Evaluation of Structural Reliability under Tsunami Loading
Authors: Sai Hung Cheung, Zhe Shao
Abstract:
It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.Keywords: response surface, stochastic simulation, structural reliability tsunami, risk
Procedia PDF Downloads 68123231 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province
Authors: N. Sopipan
Abstract:
In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.Keywords: ARIMA Models, exponential smoothing, Holt-Winter model
Procedia PDF Downloads 30223230 Scattered Places in Stories Singularity and Pattern in Geographic Information
Abstract:
Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).Keywords: discourse analysis, geographic information science place, place-making, stories
Procedia PDF Downloads 20323229 Exploring Consumers' Intention to Adopt Mobile Payment System in Ghana
Authors: Y. Kong, I. Masud, M. H. Nyaso
Abstract:
This paper seeks to examine consumers’ intention to adopt and use mobile payment method in Ghana. A conceptual framework was adopted from the extant literature using the Technology Acceptance Model (TAM) and the Theory of Reasoned Action (TRA) as the theoretical bases. Data for the study was obtained from a sample of 425 respondents through online and direct surveys using structured questionnaire. Structural Equation Modeling was used to analyse the data through SPSS v.22 and SmartPLS v.3. Findings with regards to the determinants of mobile payment system adoption indicate that subjective norm, perceived ease of use, attitude, and perceived usefulness play active roles in consumers’ decision to adopt mobile payment system in Ghana. Also, perceived usefulness and perceived ease of use have a significant and positive influence on consumers’ attitude towards mobile payment adoption in Ghana. Further, subjective norm was found to influence perceived usefulness and perceived ease of use of mobile payment adoption in Ghana. The study contributes to literature on mobile payment system from developing country context. The study proffered some recommendations.Keywords: consumer behaviour, mobile payment, subjective norm, theory of planned behavior
Procedia PDF Downloads 15923228 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 10523227 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard
Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk
Abstract:
In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify
Procedia PDF Downloads 48723226 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 2523225 Embedded Electrochemistry with Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents
Authors: Amer Dawoud, Jesy Motchaalangaram, Arati Biswakarma, Wujan Mio, Karl Wallace
Abstract:
The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWA) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.Keywords: drone-based, remote detection chemical warfare agents, miniaturized, potentiostat
Procedia PDF Downloads 14023224 Energy Efficient Refrigerator
Authors: Jagannath Koravadi, Archith Gupta
Abstract:
In a world with constantly growing energy prices, and growing concerns about the global climate changes caused by increased energy consumption, it is becoming more and more essential to save energy wherever possible. Refrigeration systems are one of the major and bulk energy consuming systems now-a-days in industrial sectors, residential sectors and household environment. Refrigeration systems with considerable cooling requirements consume a large amount of electricity and thereby contribute greatly to the running costs. Therefore, a great deal of attention is being paid towards improvement of the performance of the refrigeration systems in this regard throughout the world. The Coefficient of Performance (COP) of a refrigeration system is used for determining the system's overall efficiency. The operating cost to the consumer and the overall environmental impact of a refrigeration system in turn depends on the COP or efficiency of the system. The COP of a refrigeration system should therefore be as high as possible. Slight modifications in the technical elements of the modern refrigeration systems have the potential to reduce the energy consumption, and improvements in simple operational practices with minimal expenses can have beneficial impact on COP of the system. Thus, the challenge is to determine the changes that can be made in a refrigeration system in order to improve its performance, reduce operating costs and power requirement, improve environmental outcomes, and achieve a higher COP. The opportunity here, and a better solution to this challenge, will be to incorporate modifications in conventional refrigeration systems for saving energy. Energy efficiency, in addition to improvement of COP, can deliver a range of savings such as reduced operation and maintenance costs, improved system reliability, improved safety, increased productivity, better matching of refrigeration load and equipment capacity, reduced resource consumption and greenhouse gas emissions, better working environment, and reduced energy costs. The present work aims at fabricating a working model of a refrigerator that will provide for effective heat recovery from superheated refrigerant with the help of an efficient de-superheater. The temperature of the refrigerant and water in the de-super heater at different intervals of time are measured to determine the quantity of waste heat recovered. It is found that the COP of the system improves by about 6% with the de-superheater and the power input to the compressor decreases by 4 % and also the refrigeration capacity increases by 4%.Keywords: coefficiency of performance, de-superheater, refrigerant, refrigeration capacity, heat recovery
Procedia PDF Downloads 32223223 Corporate Societal Disclosure and Corporate Governance: A By-Contextual Analysis
Authors: Zineb Meniaoui, Fatma Zehri, Kamoussi Halioui
Abstract:
The amplified awareness of companies towards the social and environmental concerns has nowadays become a challenge for firms around the globe. Our study investigates the effects of corporate governance mechanisms on voluntarily social and environmental information disclosure in Canada and France. The study use the content analysis approach, applied on a total of 245 year-observation for the Canadian sample and 245 year-observation for the French sample from 2005 to 2011. Our results show a significant correlation between the board's independence, Corporate Social Responsibility (CSR) committee and expertise as well as the audit quality along with the extent of the social and environmental disclosure. The French firms are found disclosing more societal information than Canadian firms, which might be due to the stakeholders' pressure put on French companies to disclose such societal information.Keywords: Canada, corporate governance, disclosure determinants , France, social and environmental disclosure
Procedia PDF Downloads 35523222 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling
Authors: Kisan Sarda, Bhavika Shingote
Abstract:
This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation
Procedia PDF Downloads 386