Search results for: validation indexes
966 Validation of a Questionnaire to Measure Fluid Experience in Practical Shooting and Its Relationship with Sports Performance
Authors: Nelson Lay, Felipe Vallejo
Abstract:
The objective of this study is to determine the psychometric properties of a questionnaire to measure Fluid Experience in the practical sport shooting. Also, associate this variable with the performance levels of a group of athletes who are competitors in the discipline. The study included the participation of 18 shooters belonging to sports shooting clubs. Initially semi-structured interviews were conducted to observe the manifestation of the dimensions of the Fluid Experience. Based on these interviews, a self-report sheet was elaborated (feedback sheet). Then, through a correlational design, the association between the elaborated Fluid Experience Psychometric Questionnaire, the score assigned to the responses of the feedback sheet and the scores of the round of shots made by the participants was evaluated. The data were collected, on two different occasions, which implied a variation in the score of the Fluid Experience Questionnaire for each subject in both executions. The results showed a positive association between variations in sports performance and those of the Fluid Experience level.Keywords: flow psychology, sports psychology, states of conscience, sports performance
Procedia PDF Downloads 256965 Strategic Tools for Entrepreneurship: Model Proposal for Manufacturing Companies
Authors: Chiara Mansanta, Daniela Sani
Abstract:
The present paper presents the further development of the application of a standard methodology to boost innovation inside real case studies of manufacturing companies. The proposed methodology provides a viable solution for manufacturing companies that have to evaluate new business ideas. The study underlined the concept of entrepreneurship and how a manager can use it to promote innovation inside their companies. Starting from a literature study on entrepreneurship, this paper examines the role of the manager in supporting a company’s development. The empirical part of the study is based on two manufacturing companies that used the proposed methodology to favour entrepreneurship through an alternative approach. The research demonstrated the need for companies to have a structured and well-defined methodology to achieve their goals. The purpose of this article is to understand the significance of business models inside companies and explore how they affect business strategy and innovation management. The idea is to use business models to support entrepreneurs in their decision-making processes, reducing risks and avoiding errors.Keywords: entrepreneurship, manufacturing companies, solution validation, strategic management
Procedia PDF Downloads 95964 Simulation of Red Blood Cells in Complex Micro-Tubes
Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi
Abstract:
In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics
Procedia PDF Downloads 174963 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan
Abstract:
Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy
Procedia PDF Downloads 309962 Development and Validation of Research Process for Enhancing Humanities Competence of Medical Students
Authors: S. J. Yune, K. H. Park
Abstract:
The purpose of this study was to examine the validity of the research process for enhancing the humanities competence of the medical students. The research process was developed to be operated as a core subject course of 3 semesters. Among them, the research process for enhancing humanities capacity consisted of humanities and societies (6 teams) and education-psychology (2teams). The subjects of this study were 88-second grade students and 22 professors who participated in the research process. Among them, 13 professors participated in the study of humanities and 37 students. In the validity test, the professors were more likely to have more validity in the research process than the students in all areas of logic (p = .001), influence (p = .037), process (p = .001). The validity of the professor was higher than that of the students. The professors highly evaluated the students' learning outcomes and showed the most frequency to the prize group. As a result of analyzing the agreement between the students and the professors through the Kappa coefficient, the agreement degree of communication and cooperation competence was moderate to .430. Problem-solving ability was .340, which showed a fair degree of agreement. However, other factors showed only a slight degree of agreement of less than .20.Keywords: research process, medical school, humanities competence, validity verification
Procedia PDF Downloads 193961 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme
Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey
Abstract:
In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.Keywords: e-voting preparation stage, blind signature protocol, Nonce based authentication scheme, Kerberos Authentication Protocol, pseudo voter identity scheme PVID
Procedia PDF Downloads 299960 Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event
Authors: Carolina Morales, Ricardo Castro-Huerta, Enrique A. Mundaca
Abstract:
The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events.Keywords: bioindicator, Chile, fire severity level, soil
Procedia PDF Downloads 160959 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 428958 Forced Degradation Study of Rifaximin Formulated Tablets to Determine Stability Indicating Nature of High-Performance Liquid Chromatography Analytical Method
Authors: Abid Fida Masih
Abstract:
Forced degradation study of Rifaximin was conducted to determine the stability indicating potential of HPLC testing method for detection of Rifaximin in formulated tablets to be employed for quality control and stability testing. The questioned method applied with mobile phase methanol: water (70:30), 5µm, 250 x 4.6mm, C18 column, wavelength 293nm and flow rate of 1.0 ml/min. Forced degradation study was performed under oxidative, acidic, basic, thermal and photolytic conditions. The applied method successfully determined the degradation products after acidic and basic degradation without interfering with Rifaximin detection. Therefore, the method was said to be stability indicating and can be applied for quality control and stability testing of Rifaxmin tablets during its shelf life.Keywords: forced degradation, high-performance liquid chromatography, method validation, rifaximin, stability indicating method
Procedia PDF Downloads 314957 Developing a Comprehensive Model for the Prevention of Tension Neck Syndrome: A Focus on Musculoskeletal Disorder Prevention Strategies
Authors: Behnaz Sohani, Ifeoluwa Joshua Adigun, Amir Rahmani, Khaled Goher
Abstract:
This paper provides initial results on the efficacy of the designed ergonomic-oriented neck support to mitigate and alleviate tension neck syndrome musculoskeletal disorder. This is done using both simulations and measurements. Tension Neck Syndrome Musculoskeletal Disorder (TNS MSD) causes discomfort in the muscles around the neck and shoulder. TNS MSD is one of the leading causes of early retirement. This research focuses on the design of an adaptive neck supporter by integrating a soft actuator massager to help deliver a soothing massage. The massager and adaptive neck supporter prototype were validated by finite element analysis prior to fabrication to envisage the feasibility of the design concept. Then a prototype for the massager was fabricated and tested for concept validation. Future work will be focused on fabricating the full-scale prototype and upgrading and optimizing the design concept for the adaptive neck supporter.Keywords: adaptive neck supporter, tension neck syndrome, musculoskeletal disorder, soft actuator massager, soft robotics
Procedia PDF Downloads 111956 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria
Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande
Abstract:
This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model
Procedia PDF Downloads 219955 Statistical Characteristics of Code Formula for Design of Concrete Structures
Authors: Inyeol Paik, Ah-Ryang Kim
Abstract:
In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property
Procedia PDF Downloads 319954 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 174953 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics
Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller
Abstract:
Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach
Procedia PDF Downloads 371952 The Effect of Kangaroo Mother Care and Swaddling Method on Venipuncture Pain in Premature Infant: Randomized Clinical Trials
Authors: Faezeh Jahanpour, Shahin Dezhdar, Saeedeh Firouz Bakht, Afshin Ostovar
Abstract:
Objective: The hospitalized premature babies often undergo various painful procedures such as venous sampling. The Kangaroo mother care (KMC) method is one of the pain reduction methods, but as mother’s presence is not always possible, this research was done to compare the effect of swaddling and KMC method on venous sampling pain on premature neonates. Methods: In this randomized clinical trial 90 premature infants selected and randomly alocated into three groups; Group A (swaddling), Group B (the kangaroo care), and group C (the control). From 10 minutes before blood sampling to 2 minutes after that in group A, the infant was wrapped in a thin sheet, and in group B, the infant was under Kangaroo care. In all three groups, the heart rate and arterial oxygen saturation in time intervals of 30 seconds before, during, 30-60-90, and 120 seconds after sampling were measured and recorded. The infant’s face was video recorded since sampling till 2 minutes and the videos were checked by a researcher who was unaware of the kind of intervention and the pain assessment tools for infants (PIPP) for time intervals of 30 seconds were completed. Data analyzed by t-test, Q square, Repeated Measure ANOVA, Kruskal-Wallis, Post-hoc and Bonferroni test. Results: Findings revealed that the pain was reduced to a great extent in swaddling and kangaroo method compared to that in control group. But there was not a significant difference between kangaroo and swaddling care method (P ≥ 0.05). In addition, the findings showed that the heart rate and arterial oxygen saturation was low and stable in swaddling and Kangaroo care method and returned to base status faster, whereas, the changes were severe in control group and did not return to base status even after 120 seconds. Discussion: The results of this study showed that there was not a meaningful difference between swaddling and kangaroo care method on physiological indexes and pain in infants. Therefore, swaddling method can be a good substitute for kangaroo care method in this regard.Keywords: Kangaroo mother care, neonate, pain, premature, swaddling, venipuncture,
Procedia PDF Downloads 215951 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate
Authors: Andrey A. Chernousov, Ben Y. B. Chan
Abstract:
The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.Keywords: thermal performance, phase change material, energy efficiency, PCM optimization
Procedia PDF Downloads 402950 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 209949 Body Mass Index and Dietary Intake Amongst Alabama Students and Georgia Campers: A Secondary Analysis
Authors: David Tran, Sina Gallo, Jenny Lin
Abstract:
The present study investigated two adolescent populations between the ages of 10-14 years of age from two different studies: a dietary assessment validation study conducted at the Georgia 4-H Rock Eagle summer camp (Eatonton, Georgia) and a middle-school diet study at an Alabama middle school (Birmingham, Alabama). Energy intake and meal consumption were recorded via either direct observation of camp lunch or weighing and photography of school lunch trays. Child weight and height were measured to calculate Body Mass Index (BMI) and compared to CDC growth charts to assess percentile or Z-score. Results showed that those participants categorized with higher BMI had a statistically significant and positive correlation with energy intake (kcal). Future research should increase the sample size and include a broader subject size which includes those of a younger childhood population, to assess the effect of age.Keywords: BMI, adolescent, direct observation, dietary intake
Procedia PDF Downloads 76948 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 151947 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 442946 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 444945 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank
Authors: Jalal Haghighat Monfared, Zahra Akbari
Abstract:
Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.Keywords: business intelligence, business intelligence capability, decision making, decision quality
Procedia PDF Downloads 112944 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets
Authors: Surinder Deswal, Mahesh Pal
Abstract:
The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences
Procedia PDF Downloads 464943 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware
Authors: Ionel Zagan, Vasile Gheorghita Gaitan
Abstract:
Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system
Procedia PDF Downloads 368942 Social Media Marketing Efforts and Hospital Brand Equity: An Empirical Investigation
Authors: Abrar R. Al-Hasan
Abstract:
Despite the widespread use of social media by consumers and marketers, empirical research investigating their economic value in the healthcare industry still lags. This study explores the impact of the use of social media marketing efforts on a hospital's brand equity and, ultimately, consumer response. Using social media data from Twitter and Facebook, along with an online and offline survey methodology, data is analyzed using logistic regression models. A random sample of (728) residents of the Kuwaiti population is used. The results of this study found that social media marketing efforts (SMME) in terms of use and validation lead to higher hospital brand equity and in turn, patient loyalty and patient visit. The study highlights the impact of SMME on hospital brand equity and patient response. Healthcare organizations should guide their marketing efforts to better manage this new way of marketing and communicating with patients to enhance their consumer loyalty and financial performance.Keywords: brand equity, healthcare marketing, patient visit, social media, SMME
Procedia PDF Downloads 173941 Performance Investigation of UAV Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion
Authors: Ebrahim Hassan Kapeel, Ahmed Mohsen Kamel, Hossan Hendy, Yehia Z. Elhalwagy
Abstract:
Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control lawisdesigned for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.Keywords: UAV dynamic model, attitude control, nonlinear PID, dynamic inversion
Procedia PDF Downloads 110940 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets
Authors: Akshat Kumar, Vidushi
Abstract:
This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry
Procedia PDF Downloads 75939 A Distinct Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Quantification of Evogliptin Tartrate and Metformin HCl in Pharmaceutical Dosage Forms
Authors: Rajeshkumar Kanubhai Patel, Neha Sudhirkumar Mochi
Abstract:
A simple and accurate stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous quantitation of Evogliptin tartrate and Metformin HCl in pharmaceutical dosage forms, following ICH guidelines. Forced degradation was performed under various stress conditions including acid, base, oxidation, thermal, and photodegradation. The method utilized an Eclipse C18 column (250 mm × 4.6 mm, 5 µm) with a mobile phase of 5 mM 1-hexane sulfonic acid sodium salt in water and 0.2% v/v TEA (45:55 %v/v), adjusted to pH 3.0 with OPA, at a flow rate of 1.0 mL/min. Detection at 254.4 nm using a PDA detector showed good resolution of degradation products and both drugs. Linearity was observed within 1-5 µg/mL for Evogliptin tartrate and 100-500 µg/mL for Metformin HCl, with % recovery between 99-100% and precision within acceptable limits (%RSD < 2%). The method proved to be specific, precise, accurate, and robust for routine analysis of these drugs.Keywords: stability indicating RP-HPLC, evogliptin tartrate, metformin HCl, validation
Procedia PDF Downloads 24938 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 452937 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 260