Search results for: topological indices
369 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization
Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi
Abstract:
This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities
Procedia PDF Downloads 507368 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter
Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri
Abstract:
Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion
Procedia PDF Downloads 696367 Effect of 10 Weeks of Aerobic Exercise Training on Serum Concentrations of Surfactant Protein D and Insulin Resistance in Women with Type 2 Diabetes
Authors: Sajjad Rezaei, Mahdieh Molanouri Shamsi, Azadeh Jamali
Abstract:
Background and purpose: Surfactant protein D (SP-D) is a lung-specific protein that is detectable in human plasma. Effect of exercise training on SP-D levels as well as its relation to metabolic indices is not known. The present study then aimed to investigate the effects of 10 weeks of aerobic training on serum levels of SP-D and insulin resistance in women with type 2 diabetes. Materials and methods: Twenty-two overweight women with type 2 diabetes mellitus were recruited through deliberate sampling and randomly assigned to intervention and control groups (11 in each group). The intervention group underwent a progressive aerobic training program for 10 weeks, 3 days per week, 30-55 min/day at 50-75% heart rate reserve (HRR). Control group continued with its everyday routine. Blood samples were obtained before and after training for biochemical analysis. Within-group and between-group differences were analyzed with paired and independent t-tests in spss software, respectively, and the relation between variables was analyzed with Pearson’s correlation coefficient (all at P = 0.05). Results: Significant differences were observed between groups in leptin, glucose, waist circumference and VO2 max after training. SP-D was decreased and VO2 max was increased significantly in intervention group. However, no significant correlation was observed between SP-D and other variables. Conclusion: Since there was no corresponding decrease in insulin resistance with decreased levels of SP-D, it seems unlikely for SP-D to mediate the association between obesity and insulin resistance in type 2 diabetics.Keywords: exercise training, SP-D, insulin resistance, type 2 diabetes
Procedia PDF Downloads 418366 The Effects of Three Months of HIIT on Plasma Adiponectin on Overweight College Men
Authors: M. J. Pourvaghar, M. E. Bahram, M. Sayyah, Sh. Khoshemehry
Abstract:
Adiponectin is a cytokine secreted by the adipose tissue that functions as an anti-inflammatory, antiathrogenic and anti-diabetic substance. Its density is inversely correlated with body mass index. The purpose of this research was to examine the effect of 12 weeks of high intensity interval training (HIIT) with the level of serum adiponectin and some selected adiposity markers in overweight and fat college students. This was a clinical research in which 24 students with BMI between 25 kg/m2 to 30 kg/m2. The sample was purposefully selected and then randomly assigned into two groups of experimental (age =22.7±1.5 yr.; weight = 85.8±3.18 kg and height =178.7±3.29 cm) and control (age =23.1±1.1 yr.; weight = 79.1±2.4 kg and height =181.3±4.6 cm), respectively. The experimental group participated in an aerobic exercise program for 12 weeks, three sessions per weeks at a high intensity between 85% to 95% of maximum heart rate (considering the over load principle). Prior and after the termination of exercise protocol, the level of serum adiponectin, BMI, waist to hip ratio, and body fat percentages were calculated. The data were analyzed by using SPSS: PC 16.0 and statistical procedure such as ANCOVA, was used. The results indicated that 12 weeks of intensive interval training led to the increase of serum adiponectin level and decrease of body weight, body fat percent, body mass index and waist to hip ratio (P < 0.05). Based on the results of this research, it may be concluded that participation in intensive interval training for 12 weeks is a non-invasive treatment to increase the adiponectin level while decreasing some of the anthropometric indices associated with obesity or being overweight.Keywords: adiponectin, cardiovascular, interval, overweight, training
Procedia PDF Downloads 317365 Study of Therapeutic Potential of Dodonaea Viscosa Against Rheumatoid Arthritis in Collagen Induced Arthritic Mouse Model
Authors: Peter John, Zainab Ali, Attya Bhatti
Abstract:
Rheumatoid Arthritis (RA) is a systemic autoimmune inflammatory disease that primarily affects the joints. RA is caused in many cases by the interaction between genes and environmental factors, including tobacco, that primarily involves synovial joints. It typically starts in small peripheral joints, is usually symmetric, and progresses to involve proximal joints if left untreated. The prevalence of rheumatoid arthritis varies substantially around the globe, ranging from 0·25% to 1%.3. Rheumatoid arthritis can affect individuals of any age, with an increased incidence in people older than 40 years. Women are affected two to three times more frequently than men. The present work involved evaluating the toxicity and therapeutic potential of Dodonaea viscosa in a collagen-induced arthritic mouse model. Chemical analysis exhibited that Dodonaea viscosa has high levels of beneficial compounds, including phenols, flavonoids, and other phytochemicals. The Dodonaea viscosa showed significant antioxidant, anti-inflammatory, and anti-arthritic potential without toxic effects. Arthritic mice treated with Dodonaea viscosa showed reduced levels of rheumatoid factor and paw edema, while no significant effects on spleen indices and radiological examination of paws were found compared to control untreated arthritic mice. In summary, the Dodonaea viscosa treatment results in improvement in Arthritic Mice Model for which further studies are required.Keywords: rheumatoid arthritis, dodonaea viscisa, anti-inflammatory, anti-rheumatic
Procedia PDF Downloads 23364 Conjunctive Use of Shallow Groundwater for Irrigation Purpose: The Case of Wonji Shoa Sugar Estate, Ethiopia
Authors: Megersa Olumana Dinka, Kassahun Birhanu Tadesse
Abstract:
Irrigation suitability of shallow groundwater (SGW) was investigated by taking thirty groundwater samples from piezometers and hand-dug wells in Wonji Shoa Sugar Estate (WSSE) (Ethiopia). Many physicochemical parameters (Mg²⁺, Na⁺, Ca²⁺, K⁺, CO₃-, SO4²⁻, HCO₃⁻, Cl⁻, TH, EC, TDS and pH) were analyzed following standard procedures. Different irrigation indices (MAR, SSP, SAR, RSC, KR, and PI) were also used for SGW suitability assessment. If all SGW are blended and used for irrigation, the salinity problem would be slight to moderate, and 100% of potential sugarcane yield could be obtained. The infiltration and sodium ion toxicity problems of the blended water would be none to moderate, and slight to moderate, respectively. As sugarcane is semi-tolerant to sodium toxicity, no significant sodium toxicity problem would be expected from the use of blended water. Blending SGW would also reduce each chloride and boron ion toxicity to none. In general, the rating of SGW was good to excellent for irrigation in terms of average EC (salinity), and excellent in terms of average SAR (infiltration). The SGW of the WSSE was categorized under C3S1 (high salinity and low sodium hazard). In conclusion, the conjunctive use of groundwater for irrigation would help to reduce the potential effect of waterlogging and salinization and their associated problems on soil and sugarcane production and productivity. However, a high value of SSP and RSC indicate a high possibility of infiltration problem. Hence, it is advisable to use the SGW for irrigation after blending with surface water. In this case, the optimum blending ratio of the surface to SGW sources has to be determined for sustainable sugarcane productivity.Keywords: blending, infiltration, salinity, sodicity, sugarcane, toxicity
Procedia PDF Downloads 383363 Species Diversity and Relative Abundance of Migratory Waterbirds in Abijata Lake, Central Rift Valley, Ethiopia
Authors: Teklebrhan Kidane
Abstract:
The aim of this study is to investigate the species diversity and relative abundance of migratory waterbirds in Abijata Lake, an Important Bird Area and potential Ramsar site located in the Central Rift Valley of Ethiopia. The study was carried out, using line transect method along the shoreline and open area of the Lake. The data was analyzed with different diversity indices; t-Test and descriptive statistics. Thirty-two migratory waterbird species grouped into twelve families consisting of globally threatened birds were identified and recorded. Family Scolopacidae (12 species) had the highest number of species. The lowest number of species was observed under the families Ciconidae, Accipitridae, Laridae and Falconidae with one species each. The recorded bird species comprised 19 Palearctic, 5 Intra-African, 2 local migrants as well as 6 resident Palearctic migratory waterbird species. The dry season had higher species diversity (H'=1.01) compared to the wet season (H'=0.76). The highest and lowest diversity of migratory waterbirds were recorded during January (H'= 1.28) and June (H'= 0.52), respectively. However, the highest evenness (E) of bird species was recorded during wet season (E=0.21) and lower during the dry season (E=0.09). The computed seasonal effect reveals that there is significant effect of seasons on species diversity (t=2.80, P < 0.05), but the effect of seasons on individuals of migratory bird species was not significant (t=1.42, P > 0.05). Even though Lake Abijata is the sanctuary of several migratory waterbirds, anthropogenic activities are rigorously threatening their survival. Therefore, it needs an urgent conservation concern.Keywords: migration, important bird area, species diversity, wetland birds
Procedia PDF Downloads 204362 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 76361 Aspects of the Reproductive Biology of the Reticulate Knife Fish, Papyrocranus afer (Gunther, 1868) In Lekki Lagoon, Nigeria
Authors: Adiaha A. A. Ugwumba, Femi V. Oluwale
Abstract:
Sizes at maturity (Lₘ₅₀), fecundity, sex ratio, and gonadosomatic indices (GSI) of the reticulate knife fish, Papyrocranus afer, collected from Lekki Lagoon, were investigated. A Total of 1154 specimens with standard lengths of 5.2-75.9 cm (mean = 34.86±17.2cm) and body weight of 7.9-1, 958.8g (mean = 249.12±28.56g) were collected by means of artisanal passive and active gears (traps, long lines, and nets) and examined. Sexes of fish specimens were determined macroscopically and microscopically after dissection. The length at which 50% of the fish population reached sexual maturity (Lₘ₅₀) was considered as length at sexual maturity. Fecundity was determined by total counts of eggs; sex ratio by the proportion of males to females, while GSI was determined as gonad weight expressed as a percentage of total body weight. Results showed that the most frequently caught fish was 34.5cm long, while the sizes at maturity were 49.1cm (males) and 53.4cm (females). Matured specimens had characteristic urinogenital papillae prominent in males but vestigial in females. Sex ratio (1: 0.6; Male: female) was significantly different (X² (1) = 32.21, p < 0.0001). Fecundity was low (mean 49 ± 17 eggs for a fish of 52.86 ±7.53cm); it increased with fish size (r = 0.71). Higher GSI during the rainy season with a peak in July (female: 0.44 ± 0.14 %; male: 0.22 ± 0.01 %) indicated seasonal/annual spawning. Low fecundity and annual spawning underlined the need for sustainable management of this species in Lekki Lagoon.Keywords: breeding season, fecundity, gonad maturity, Lekki lagoon, Papyrocranus afer, sex ratio
Procedia PDF Downloads 70360 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 183359 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 66358 Biomphalaria alexandrina Snail as a Bio-Indicator of Pollution With Manganese Metal and Its Effect on Physiological, Immunological, Histopathological Parameters and Larvicidal Potencies
Authors: Amina M. Ibrahim, Ahmed A. Abdel-Haleem, Rania G. Taha
Abstract:
Metal pollution results in many dangerous consequences to the environment and human health due to the bioaccumulation in their tissues. The present study aims to measure the bioaccumulation factor of the Manganese (Mn) heavy metal in Biomphlaria alexandrina snails' tissues and water samples. The present results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidial and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24h or 48h, while increased both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48h, where, the granulocytes had irregular cell membrane, and forming pseudopodia. Besides, both levels of Testosterone (T) and Estradiol (E) were increased after exposure to 87.5mg/l Mn metal compared to the control group. Also, it increased MDA (Malonaldehyde) and TAC (Total antioxidant capacity) contents, while, decreased SOD (superoxide dismutase). Besides, it caused great histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells and the connective tissues. Therefore, B. alexandrina might be used as sensitive bio-indicator of pollution with Mn heavy metal to avoid ethics rules; beside they are easily available and large in number.Keywords: manganese metal, B. alexandrina, hormonal alterations, histopathology
Procedia PDF Downloads 58357 Investigating Spatial Disparities in Health Status and Access to Health-Related Interventions among Tribals in Jharkhand
Authors: Parul Suraia, Harshit Sosan Lakra
Abstract:
Indigenous communities represent some of the most marginalized populations globally, with India labeled as tribals, experiencing particularly pronounced marginalization and a concerning decline in their numbers. These communities often inhabit geographically challenging regions characterized by low population densities, posing significant challenges to providing essential infrastructure services. Jharkhand, a Schedule 5 state, is infamous for its low-level health status due to disparities in access to health care. The primary objective of this study is to investigate the spatial inequalities in healthcare accessibility among tribal populations within the state and pinpoint critical areas requiring immediate attention. Health indicators were selected based on the tribal perspective and association of Sustainable Goal 3 (Good Health and Wellbeing) with other SDGs. Focused group discussions in which tribal people and tribal experts were done in order to finalize the indicators. Employing Principal Component Analysis, two essential indices were constructed: the Tribal Health Index (THI) and the Tribal Health Intervention Index (THII). Index values were calculated based on the district-wise secondary data for Jharkhand. The bivariate spatial association technique, Moran’s I was used to assess the spatial pattern of the variables to determine if there is any clustering (positive spatial autocorrelation) or dispersion (negative spatial autocorrelation) of values across Jharkhand. The results helped in facilitating targeting policy interventions in deprived areas of Jharkhand.Keywords: tribal health, health spatial disparities, health status, Jharkhand
Procedia PDF Downloads 96356 Growth Performance and Economy of Production of Pullets Fed on Different Energy Based Sources
Authors: O. A. Anjola, M. A. Adejobi, A. Ogunbameru, F. P. Agbaye, R. O. Odunukan
Abstract:
This experiment was conducted for 8 weeks to evaluate the growth performance and economics of pullets fed on different dietary energy sources. A total of 300 Harco black was used for this experiment. The birds were completely randomized and divided into four diet treatment groups. Each treatment group had three replicates of twenty-five birds per replicate. Four diets containing maize, spaghetti, noodles, and biscuit was formulated to represent diet 1, 2, 3 and 4 respectively. Diet 1 containing maize is the control, while diet 2, 3, and 4 contains spaghetti, noodles, and biscuit waste meal at 100% replacement for maize on weight for weight basis. Performance indices on Feed intake, body weight, weight gain, feed conversion ratio (FCR) and economy of production were measured. Blood samples were also collected for heamatology and serum biochemistry assessment. The result of the experiment indicated that different dietary energy source fed to birds significantly (P < 0.05) affect feed intake, body weight, weight gain, and feed conversion ratio (FCR). The best cost of feed per kilogram of body weight gain was obtained in Spaghetti based diet (₦559.30). However, the best performance were obtained from diet 1(maize), it can be concluded that spaghetti as a replacement for maize in diet of pullet is most economical and profitable for production without any deleterious effects attached. Blood parameters of birds were not significantly (p > 0.05) influenced by the use of the dietary energy sources used in this experiment.Keywords: growth performance, spaghetti, noodles, biscuit, profit, hematology, serum biochemistry
Procedia PDF Downloads 228355 Light and Electron Microscopy Study of Acrylamide-Induced Hypothalamic Neuropathy
Authors: Keivan Jmahidi, Afshin Zahedi
Abstract:
To evaluate neurotoxic effects of ACR on hypothalamus of rat, amino-cupric silver staining technique of de Olmos and electron microscopic examination were conducted. For this purpose 60 adult male Wistar rats (± 250 g) were selected. Randomly assigned groups of rats (10 rats per exposure group, as A, B, C, D, E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days i.p. respectively. The remaining 10 rats were housed in group F as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, daily weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. After 11 days, two rats for silver stain, and two rats for EM, were randomly selected, dissected and proper samples were collected from hypothalamus. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultrastructural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation and clumping inside the axolem, and finaly complete disappearance of laminar sheet were observed.Keywords: acrylamide (ACR), amino-cupric silver staining technique of de Olmos, argyrophilia, hypothalamic neuropathy
Procedia PDF Downloads 546354 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 335353 Spatial Differentiation Patterns and Influencing Mechanism of Urban Greening in China: Based on Data of 289 Cities
Authors: Fangzheng Li, Xiong Li
Abstract:
Significant differences in urban greening have occurred in Chinese cities, which accompanied with China's rapid urbanization. However, few studies focused on the spatial differentiation of urban greening in China with large amounts of data. The spatial differentiation pattern, spatial correlation characteristics and the distribution shape of urban green space ratio, urban green coverage rate and public green area per capita were calculated and analyzed, using Global and Local Moran's I using data from 289 cities in 2014. We employed Spatial Lag Model and Spatial Error Model to assess the impacts of urbanization process on urban greening of China. Then we used Geographically Weighted Regression to estimate the spatial variations of the impacts. The results showed: 1. a significant spatial dependence and heterogeneity existed in urban greening values, and the differentiation patterns were featured by the administrative grade and the spatial agglomeration simultaneously; 2. it revealed that urbanization has a negative correlation with urban greening in Chinese cities. Among the indices, the the proportion of secondary industry, urbanization rate, population and the scale of urban land use has significant negative correlation with the urban greening of China. Automobile density and per capita Gross Domestic Product has no significant impact. The results of GWR modeling showed that the relationship between urbanization and urban greening was not constant in space. Further, the local parameter estimates suggested significant spatial variation in the impacts of various urbanization factors on urban greening.Keywords: China’s urbanization, geographically weighted regression, spatial differentiation pattern, urban greening
Procedia PDF Downloads 462352 Evaluation of Developmental Toxicity and Teratogenicity of Perfluoroalkyl Compounds Using FETAX
Authors: Hyun-Kyung Lee, Jehyung Oh, Young Eun Jeong, Hyun-Shik Lee
Abstract:
Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in the human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in the ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8-11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs) and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using the whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.Keywords: PFC, xenopus, fetax, development
Procedia PDF Downloads 352351 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India
Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar
Abstract:
This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies
Procedia PDF Downloads 421350 Sustainability Assessment of Food Delivery with Last-Mile Delivery Droids, A Case Study at the European Commission's JRC Ispra Site
Authors: Ada Garus
Abstract:
This paper presents the outcomes of the sustainability assessment of food delivery with a last-mile delivery service introduced in a real-world case study. The methodology used in the sustainability assessment integrates multi-criteria decision-making analysis, sustainability pillars, and scenario analysis to best reflect the conflicting needs of stakeholders involved in the last mile delivery system. The case study provides an application of the framework to the food delivery system of the Joint Research Centre of the European Commission where three alternative solutions were analyzed I) the existent state in which individuals frequent the local cantine or pick up their food, using their preferred mode of transport II) the hypothetical scenario in which individuals can only order their food using the delivery droid system III) a scenario in which the food delivery droid based system is introduced as a supplement to the current system. The environmental indices are calculated using a simulation study in which decision regarding the food delivery is predicted using a multinomial logit model. The vehicle dynamics model is used to predict the fuel consumption of the regular combustion engines vehicles used by the cantine goers and the electricity consumption of the droid. The sustainability assessment allows for the evaluation of the economic, environmental, and social aspects of food delivery, making it an apt input for policymakers. Moreover, the assessment is one of the first studies to investigate automated delivery droids, which could become a frequent addition to the urban landscape in the near future.Keywords: innovations in transportation technologies, behavioural change and mobility, urban freight logistics, innovative transportation systems
Procedia PDF Downloads 193349 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE
Procedia PDF Downloads 428348 Understanding Tourism Innovation through Fuzzy Measures
Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia
Abstract:
In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).Keywords: innovation, business model, tourism, fuzzy
Procedia PDF Downloads 272347 Soil Salinity from Wastewater Irrigation in Urban Greenery
Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton
Abstract:
The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities
Procedia PDF Downloads 162346 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto
Abstract:
Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.Keywords: frontal lobe, functional near-infrared spectroscopy, state-trait anxiety inventory score, stress
Procedia PDF Downloads 250345 Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization
Authors: Theresa K., Shanmugasundaram R., Kennedy J. S.
Abstract:
Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉.Keywords: rice cropping system, soil quality indicators, imbalanced fertilization, yield
Procedia PDF Downloads 158344 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic
Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony
Abstract:
The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight
Procedia PDF Downloads 74343 Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)
Authors: Shital Bangar, G. B. Khandagale
Abstract:
The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield.Keywords: boron, growth, productivity, quality, soybean and sulphur
Procedia PDF Downloads 405342 Correlations between Pushing Skills and Pushing Perceptions, Second-Stage Labor Duration, Postpartum Fatigue, and Birth Satisfaction
Authors: Yu-Ching Huang
Abstract:
Background: Delivery bridges the antepartum and postpartum period. Subsequent fatigue can affect indices, including postpartum recovery and life quality. Milk secretion, breastfeeding quality, and newborn participation may be compromised. Correspondingly, using proper pushing skills during the second stage of labor has the potential to effectively reduce postpartum fatigue and enhance birth satisfaction in new mothers. Purpose: To compare the effects of using different pushing skills on maternal pushing perception, postpartum fatigue, and birth satisfaction. Methodology: The present study used a descriptive research approach and recruited 382 participants from a medical center in northern Taiwan. Data were collected using a structured questionnaire, which included a demographic and obstetrics information datasheet, the Labor Pushing Experience Scale, a fatigue scale, and a birth satisfaction scale. Research Results: Using pushing skills (including upright position [t= 2.28, p < .05] and delayed pushing [t= -1.98, p < .05] during the second stage of labor was shown to enhance birth satisfaction in participants. Additionally, open glottis pushing ( t = 5.46, p < .001) resulted in a mean duration of second-stage labor that was 17.67 minutes less than that achieved using Valsalva pushing. Moreover, a better perceived pushing experience was associated with lower perceived postpartum fatigue (r = .46, p < .05) and higher birth satisfaction (r = -.16, p < .05). Finally, postpartum fatigue perception was negatively associated with birth satisfaction (r = -.16, p < .05). Conclusion and Clinical Application: The findings suggest that midwives should advocate that women adopt upright positions, delayed pushing, and open glottis pushing during the second stage of labor in order to enhance their birth satisfaction.Keywords: second stage labor duration of pushing skill, pushing experience perception, postpartum fatigue, birth satisfaction
Procedia PDF Downloads 267341 Nexus of Pakistan Stock Exchange with World's Top Five Stock Markets after Launching China Pakistan Economic Corridor
Authors: Abdul Rauf, Xiaoxing Liu, Waqas Amin
Abstract:
Stock markets are fascinating more and more conductive to each other due to liberalization and globalization trends in recent years. China Pakistan Economic Corridor (CPEC) has dragged Pakistan stock exchange to the new heights and global investors are making investments to reap its benefits. So, in investors and government perspective, the study focuses co-integration of Pakistan stock exchange with world’s five big economies i-e US, China, England, Japan, and France. The time period of study is seven years i-e 2010 to 2016 and daily values of major indices of corresponding stock exchanges collected. All variables of that particular study are stationary at first difference confirmed by unit root test. The study Johansen system co integration test for analysis of data along with Granger causality test is performed for result purpose. Co integration test asserted that Pakistan stock exchange integrated with Shanghai stock exchange (SSE) and NIKKEI stock exchange in short run. Granger causality test also proclaimed these results. But NASDAQ, FTSE, DAX not co integrated and Granger cause at a short run but long run these markets are bonded with Pakistan stock exchange (KSE). VECM also confirmed this liaison in short and long run. Investors, therefore, need to be updated regarding co-integration of world’s stock exchanges to ensure well diversified and risk adjusted high returns. Equally, governments also need updated status so that they could reduce co-integration through multiple steps and hence drag investors for diversified investment.Keywords: CPEC, DAX, FTSE, liberalization, NASDAQ, NIKKEI, SSE, stock markets
Procedia PDF Downloads 303340 The Log S-fbm Nested Factor Model
Authors: Othmane Zarhali, Cécilia Aubrun, Emmanuel Bacry, Jean-Philippe Bouchaud, Jean-François Muzy
Abstract:
The Nested factor model was introduced by Bouchaud and al., where the asset return fluctuations are explained by common factors representing the market economic sectors and residuals (noises) sharing with the factors a common dominant volatility mode in addition to the idiosyncratic mode proper to each residual. This construction infers that the factors-residuals log volatilities are correlated. Here, we consider the case of a single factor where the only dominant common mode is a S-fbm process (introduced by Peng, Bacry and Muzy) with Hurst exponent H around 0.11 and the residuals having in addition to the previous common mode idiosyncratic components with Hurst exponents H around 0. The reason for considering this configuration is twofold: preserve the Nested factor model’s characteristics introduced by Bouchaud and al. and propose a framework through which the stylized fact reported by Peng and al. is reproduced, where it has been observed that the Hurst exponents of stock indices are large as compared to those of individual stocks. In this work, we show that the Log S-fbm Nested factor model’s construction leads to a Hurst exponent of single stocks being the ones of the idiosyncratic volatility modes and the Hurst exponent of the index being the one of the common volatility modes. Furthermore, we propose a statistical procedure to estimate the Hurst factor exponent from the stock returns dynamics together with theoretical guarantees, with good results in the limit where the number of stocks N goes to infinity. Last but not least, we show that the factor can be seen as an index constructed from the single stocks weighted by specific coefficients.Keywords: hurst exponent, log S-fbm model, nested factor model, small intermittency approximation
Procedia PDF Downloads 51