Search results for: selective catalytic reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6032

Search results for: selective catalytic reduction

5372 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 553
5371 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach

Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov

Abstract:

Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.

Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology

Procedia PDF Downloads 114
5370 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 488
5369 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 189
5368 Glyco-Conjugated Gold Nanorods Based Biosensor for Optical Detection and Photothermal Ablation of Food Borne Bacteria

Authors: Shimayali Kaushal, Nitesh Priyadarshi, Nitin Kumar Singhal

Abstract:

Food borne bacterial species have been identified as major pathogens in most of the severe pathogen-related diseases among humans which result in great loss to human health and food industry. Conventional methods like plating and enzyme-linked immune sorbent assay (ELISA) are time-consuming, laborious and require specialized instruments. Nanotechnology has emerged as a great field in case of rapid detection of pathogens in recent years. The AuNRs material has good electro-optical properties due to its larger light absorption band and scattering in surface plasmon resonance wavelength regions. By exploiting the sugar-based adhesion properties of microorganism, we can use the glycoconjugates capped gold nanorods as a potential nanobiosensor to detect the foodborne pathogen. In the present study, polyethylene glycol (PEG) coated gold nanorods (AuNRs) were prepared and functionalized with different types of carbohydrates and further characterized by UV-Visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM). The reactivity of above said nano-biosensor was probed by lectin binding assay and also by different strains of foodborne bacteria by using spectrophotometric and microscopic techniques. Due to the specific interaction of probe with foodborne bacteria (Escherichia coli, Pseudomonas aeruginosa), our nanoprobe has shown significant and selective ablation of targeted bacteria. Our findings suggest that our nanoprobe can be an ideal candidate for selective optical detection of food pathogens and can reduce loss to the food industry.

Keywords: glyco-conjugates, gold nanorods, nanobiosensor, nanoprobe

Procedia PDF Downloads 136
5367 Iron Recovery from Red Mud As Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: alumina, red mud, electrochemical reduction, iron production

Procedia PDF Downloads 80
5366 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 370
5365 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels

Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam

Abstract:

The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.

Keywords: urea, NOx emissions, diesel engines, biodiesels

Procedia PDF Downloads 495
5364 Synthesis and Characterization of a Type Oxide Ca1-x Srx MnO3

Authors: A. Guemache, M. Omari

Abstract:

Oxides with formula Ca1-xSrx MnO3(0≤x≤0.2) were synthesized using co precipitation method. The identification of the obtained phase was carried out using infrared spectroscopy and x-ray diffraction. Thermogravimetric and differential analysis was permitted to characterize different transformations of precursors which take place during one heating cycle. The study of electrochemical behavior was carried out by cyclic voltammetry and impedance spectroscopy. The obtained results show that apparent catalytic activity improved when increasing the concentration of strontium. Anodic current densities varies from 1.3 to 5.9 mA/cm2 at the rate scan of 20 mV.s-1 and a potential 0.8 V for oxides with composition x=0 to 0.2.

Keywords: oxide, co-precipitation, thermal analysis, electrochemical properties

Procedia PDF Downloads 363
5363 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration

Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa

Abstract:

Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.

Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation

Procedia PDF Downloads 351
5362 Ag Nanoparticle/Melamine Sulfonic Acid Supported on Alumina: Efficient Catalytic System in Synthesis of Dihydropyrimidines

Authors: Parya Nasehi, Mohammad Kazem Mohammadi

Abstract:

3,4-dihydropyrimidin-2(1H)-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA) supported on alumina. The reaction was carried out at 110 oC for 20 min under solvent free conditions. This method have some advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

Keywords: nanoparticle melamine sulfonic acid, Al2O3, Biginelli reaction, 3, 4-dihydropyrimidin-2(1H, solvent free

Procedia PDF Downloads 514
5361 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 479
5360 Mechanism of pH Sensitive Flocculation for Organic Load and Colour Reduction in Landfill Leachate

Authors: Brayan Daniel Riascos Arteaga, Carlos Costa Perez

Abstract:

Landfill leachate has an important fraction of humic substances, mainly humic acids (HAs), which often represent more than half value of COD, specially in liquids proceeded from composting processes of organic fraction of solid wastes. We propose in this article a new method of pH sensitive flocculation for COD and colour reduction in landfill leachate based on the chemical properties of HAs. Landfill leachate with a high content of humic acids can be efficiently treated by pH sensitive flocculation at pH 2.0, reducing COD value in 86.1% and colour in 84.7%. Mechanism of pH sensitive flocculation is based in protonation first of phenolic groups and later of carboxylic acid groups in the HAs molecules, resulting in a reduction of Zeta potential value. For pH over neutrality, carboxylic acid and phenolic groups are ionized and Zeta potential increases in absolute value, maintaining HAs in suspension as colloids and conducting flocculation to be obstructed. Ionized anionic groups (carboxylates) can interact electrostatically with cations abundant in leachate (site binding) aiding to maintain HAs in suspension. Simulation of this situation and ideal visualization of Zeta potential behavior is described in the paper and aggregation of molecules by H-bonds is proposed as the main step in separation of HAs from leachate and reduction of COD value in this complex liquid. CHNS analysis, FT-IR spectrometry and UV–VIS spectrophotometry show chemical elements content in the range of natural and commercial HAs, clear aromaticity and carboxylic acids and phenolic groups presence in the precipitate from landfill leachate

Keywords: landfill leachate, humic acids, COD, chemical treatment, flocculation

Procedia PDF Downloads 71
5359 Preparing and Scaling up Resiliency among Female Entrepreneurs in Mountain Environments

Authors: Shadreck Muchaku, Grey Magaiza, Jerit Dube

Abstract:

The high insolvency rate of female-led emerging enterprises in the Southern African mountain region reflects the various vulnerabilities that exist. Although this is the case, there is a limited understanding of how these vulnerabilities influence entrepreneurship failure. This paper focuses on female entrepreneurs because of their role in economic development. Emerging female entrepreneurs in this region often operate in uncertain environments, which makes it difficult for them to thrive. The form and nature of entrepreneurial opportunities rural women of the Afro Montane region engage in are largely unsustainable as a lot of women struggle with confidence, and they need help with understanding their skills. However, there is still a gap in the existing literature on women entrepreneurship resilience and vulnerability reduction in the Afromontane. Furthermore, a major problem is the lack of empirical studies on this matter and limited studies indicating a general profile of emerging female entrepreneurs in this region. This systematic literature review attempts to fill in the gap of knowledge on entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in the Afromontane regions and other similar precarious environments. In this review, we focus much on highlighting the nexus between entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in academic literature through a chronological dispersal of publications in developing countries. This review adopts an ATLAS ti.22 software-based thematic analysis to analyze results obtained from reviewed academic journal articles. As research on entrepreneurship resilience and vulnerability reduction is still developing in the Sothern African mountain region, the results of this review will contribute to the body of literature and provide recommendations and a foundation for future research. This systematic review paper provides valuable insights and methodological approaches to scholarship in a nascent area of emerging female entrepreneurs in the Afromontane.

Keywords: entrepreneurship resiliency, vulnerability reduction, female entrepreneurs, mountain regions

Procedia PDF Downloads 143
5358 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 52
5357 Reduction of the Microbial Load of Biocontaminated Bovine Milk Using Grounding with Copper Wire

Authors: Claudivan Costa de Lima, Angelo da Silva Monteiro

Abstract:

With the aim of evaluating the effects of grounding with copper wire on the reduction of the microbial load of biocontaminated milk samples and on their acidification over time, two complementary experiments were carried out. In the first, the treatments consisted of: i) raw milk sample (control), ii) slow pasteurization, iii) grounding with copper wire and, iv) contact with copper ring. Analyzes of total, thermoresistant and mesophilic coliforms were performed 30 minutes after the application of these treatments. In the second experiment, under the same conditions as the first, measurements of pH and Dornic acidity were performed at 0, 0.5, 2, 4, 8, 12, and 24 h from the installation of the experiment. Pasteurization eliminated almost all groups of bacteria present in the milk samples while grounding only allowed reductions in the population of thermotolerant coliforms and mesophiles, both greater than 95%, maintaining, however, unchanged the amounts of total coliforms. The copper ring, in turn, had no effect on the microbiological parameters studied. The reduction in the population of mesophiles in grounded milk samples, contrary to what happened with pasteurized milk, was not enough to inhibit the acidification process over the experimental period.

Keywords: pasteurization, low frequency electric current, thermotolerant coliforms, mesophiles in bovine milk

Procedia PDF Downloads 108
5356 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K

Authors: Pavel Zabrodin

Abstract:

The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.

Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy

Procedia PDF Downloads 456
5355 Preparation and Characterization of Dendrimer-Encapsulated Ytterbium Nanoparticles to Produce a New Nano-Radio Pharmaceutical

Authors: Aghaei Amirkhizi Navideh, Sadjadi Soodeh Sadat, Moghaddam Banaem Leila, Athari Allaf Mitra, Johari Daha Fariba

Abstract:

Dendrimers are good candidates for preparing metal nanoparticles because they can structurally and chemically well-defined templates and robust stabilizers. Poly amidoamine (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized in pharmaceutical industry. In addition, encapsulated nanoparticle surfaces are accessible to substrates so that catalytic reactions can be carried out. For preparation of dendimer-metal nanocomposite, a dendrimer solution containing an average of 55 Yb+3 ions per dendrimer was prepared. Prior to reduction, the pH of this solution was adjusted to 7.5 using NaOH. NaBH4 was used to reduce the dendrimer-encapsulated Yb+3 to the zerovalent metal. The pH of the resulting solution was then adjusted to 3, using HClO4, to decompose excess BH4-. The UV-Vis absorption spectra of the mixture were recorded to ensure the formation of Yb-G5-NH2 complex. High-resolution electron microscopy (HRTEM) and size distribution results provide additional information about dendimer-metal nanocomposite shape, size, and size distribution of the particles. The resulting mixture was irradiated in Tehran Research Reactor 2h and neutron fluxes were 3×1011 n/cm2.Sec and the specific activity was 7MBq. Radiochemical and chemical and radionuclide quality control testes were carried. Gamma Spectroscopy and High-performance Liquid Chromatography HPLC, Thin-Layer Chromatography TLC were recorded. The injection of resulting solution to solid tumor in mice shows that it could be resized the tumor. The studies about solid tumors and nano composites show that ytterbium encapsulated-dendrimer radiopharmaceutical could be introduced as a new therapeutic for the treatment of solid tumors.

Keywords: nano-radio pharmaceutical, ytterbium, PAMAM, dendrimers

Procedia PDF Downloads 504
5354 A Systematic Review of the Methodological and Reporting Quality of Case Series in Surgery

Authors: Riaz A. Agha, Alexander J. Fowler, Seon-Young Lee, Buket Gundogan, Katharine Whitehurst, Harkiran K. Sagoo, Kyung Jin Lee Jeong, Douglas G. Altman, Dennis P. Orgill

Abstract:

Introduction: Case Series are an important and common study type. Currently, no guideline exists for reporting case series and there is evidence of key data being missed from such reports. We propose to develop a reporting guideline for case series using a methodologically robust technique. The first step in this process is a systematic review of literature relevant to the reporting deficiencies of case series. Methods: A systematic review of methodological and reporting quality in surgical case series was performed. The electronic search strategy was developed by an information specialist and included MEDLINE, EMBASE, Cochrane Methods Register, Science Citation index and Conference Proceedings Citation index, from the start of indexing until 5th November 2014. Independent screening, eligibility assessments and data extraction was performed. Included articles were analyzed for five areas of deficiency: failure to use standardized definitions missing or selective data transparency or incomplete reporting whether alternate study designs were considered. Results: The database searching identified 2,205 records. Through the process of screening and eligibility assessments, 92 articles met inclusion criteria. Frequency of methodological and reporting issues identified was a failure to use standardized definitions (57%), missing or selective data (66%), transparency, or incomplete reporting (70%), whether alternate study designs were considered (11%) and other issues (52%). Conclusion: The methodological and reporting quality of surgical case series needs improvement. Our data shows that clear evidence-based guidelines for the conduct and reporting of a case series may be useful to those planning or conducting them.

Keywords: case series, reporting quality, surgery, systematic review

Procedia PDF Downloads 359
5353 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber

Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong

Abstract:

Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.

Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement

Procedia PDF Downloads 186
5352 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia

Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez

Abstract:

Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.

Keywords: drinking water, hepatitis A, rotavirus, virus removal

Procedia PDF Downloads 233
5351 Aerodynamic Heating and Drag Reduction of Pegasus-XL Satellite Launch Vehicle

Authors: Syed Muhammad Awais Tahir, Syed Hossein Raza Hamdani

Abstract:

In the last two years, there has been a substantial increase in the rate of satellite launches. To keep up with the technology, it is imperative that the launch cost must be made affordable, especially in developing and underdeveloped countries. Launch cost is directly affected by the launch vehicle’s aerodynamic performance. Pegasus-XL SLV (Satellite Launch Vehicle) has been serving as a commercial SLV for the last 26 years, commencing its commercial flight operation from the six operational sites all around the US and Europe, and the Marshal Islands. Aerodynamic heating and drag contribute largely to Pegasus’s flight performance. The objective of this study is to reduce the aerodynamic heating and drag on Pegasus’s body significantly for supersonic and hypersonic flight regimes. Aerodynamic data for Pegasus’s first flight has been validated through CFD (Computational Fluid Dynamics), and then drag and aerodynamic heating is reduced by using a combination of a forward-facing cylindrical spike and a conical aero-disk at the actual operational flight conditions. CFD analysis using ANSYS fluent will be carried out for Mach no. ranges from 0.83 to 7.8, and AoA (Angle of Attack) ranges from -4 to +24 degrees for both simple and spiked-configuration, and then the comparison will be drawn using a variety of graphs and contours. Expected drag reduction for supersonic flight is to be around 15% to 25%, and for hypersonic flight is to be around 30% to 50%, especially for AoA < 15⁰. A 5% to 10% reduction in aerodynamic heating is expected to be achieved for hypersonic regions. In conclusion, the aerodynamic performance of air-launched Pegasus-XL SLV can be further enhanced, leading to its optimal fuel usage to achieve a more economical orbital flight.

Keywords: aerodynamics, pegasus-XL, drag reduction, aerodynamic heating, satellite launch vehicle, SLV, spike, aero-disk

Procedia PDF Downloads 110
5350 Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors

Authors: Claudia Matassa, Matthias Hohne, Dominic Ormerod, Yamini Satyawali

Abstract:

Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal.

Keywords: amine donor, chiral amines, in situ product removal, transamination

Procedia PDF Downloads 154
5349 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: aerodynamic interaction, drag force, frontal area, speed skating

Procedia PDF Downloads 132
5348 Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media

Authors: K. Rasool

Abstract:

Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.

Keywords: green biocides, chitosan/lignosulfonate nanocomposite, SRBs, toxicity

Procedia PDF Downloads 121
5347 Safeners, Tools for Artificial Manipulation of Herbicide Selectivity: A Zea mays Case Study

Authors: Sara Franco Ortega, Alina Goldberg Cavalleri, Nawaporn Onkokesung, Richard Dale, Melissa Brazier-Hicks, Robert Edwards

Abstract:

Safeners are agrochemicals that enhance the selective chemical control of wild grasses by increasing the ability of the crop to metabolise the herbicide. Although these compounds are widely used, their mode of action is not well understood. It is known that safeners enhance the metabolism of herbicides, by up-regulating the associated detoxification system we have termed the xenome. The xenome proteins involved in herbicide metabolism have been previously divided into four different phases, with cytochrome P450s (CYPs) playing a key role in phase I metabolism by catalysing hydroxylation and dealkylation reactions. Subsequently, glutathione S-transferases (GSTs) and UDP-glucosyltransferases lead to the formation of Phase II conjugates prior to their transport into the vacuole by ABCs transporters (Phase III). Maize (Zea mays), was been treated with different safeners to explore the selective induction of xenome proteins, with a special interest in the regulation of the CYP superfamily. Transcriptome analysis enabled the identification of key safener-inducible CYPs that were then functionally assessed to determine their role in herbicide detoxification. In order to do that, CYP’s were codon optimised, synthesised and inserted into the yeast expression vector pYES3 using in-fusion cloning. CYP’s expressed as recombinant proteins in a strain of yeast engineered to contain the P450 co-enzyme (cytochrome P450 reductase) from Arabidopsis. Microsomes were extracted and treated with herbicides of different chemical classes in the presence of the cofactor NADPH. The reaction products were then analysed by LCMS to identify any herbicide metabolites. The results of these studies will be presented with the key CYPs identified in maize used as the starting point to find orthologs in other crops and weeds to better understand their roles in herbicide selectivity and safening.

Keywords: CYPs, herbicide detoxification, LCMS, RNA-Seq, safeners

Procedia PDF Downloads 138
5346 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source

Authors: Priya Tomar, Pallavi Mittal

Abstract:

Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.

Keywords: bioremediation, decolourization, black liquor, mycoremediation

Procedia PDF Downloads 411
5345 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 57
5344 Community Adaptation of Drought Disaster in Grobogan District, Central Java Province, Indonesia

Authors: Chatarina Muryani, Sarwono, Sugiyanto Heribentus

Abstract:

Major part of Grobogan District, Central Java Province, Indonesia, always suffers from drought every year. The drought has implications toward almost all of the community activities, both domestic, agriculture, livestock, and industrial. The aim of this study was to determine (1) the drought distribution area in Grobogan District in 2015; (2) the impact of drought; and (3) the community adaptation toward the drought. The subject of the research was people who were impacted by the drought, purposive sampling technique was used to draw the sample. The data collection method was using field observation and in-depth interview while the data analysis was using descriptive analysis. The results showed that (1) in 2015, there were 14 districts which were affected by the drought and only 5 districts which do not suffer from drought, (2) the drought impacted to the reduction of water for domestic compliance, reduction of agricultural production, reduction of public revenue, (3) community adaptation to meet domestic water need was by making collective deep-wells and building water storages, adaptation in agriculture was done by setting the cropping pattern, while adaptation on economics was by allocating certain amount of funds for the family in anticipation of drought, which was mostly to purchase water.

Keywords: adaptation, distribution, drought, impacts

Procedia PDF Downloads 379
5343 Tissue-Specific Distribution of Cytochrome P450 1A1 and 3A in Rainbow Trout (Oncorhynchus mykiss)

Authors: Viktoriia Burkina, Vladimir Zlabek, Galia Zamaratskaia

Abstract:

Cytochromes P450 (CYP) are important family of enzymes in Phase I metabolism. Environmental pollutants often act as inducers of the gene expression and activities CYP1A1 and CYP3A-like isoforms in fish. The activities are generally measured in the fish liver or gills, and less is known about tissue distribution of expression. In present study, the CYP1A1 and CYP3A-like activities were measured in rainbow trout liver, gill, intestine, heart, brain and gonads. The activities of CYP1A1 and CYP3A-like proteins were estimated as the rates of 7-ethoxyresorufin-O-deethylation (EROD) and benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation (BFCOD), respectively. The CYP1A1 and CYP3A-like activities were detectable in all investigated fish tissues, with the highest activity in hepatic tissue followed by heart > brain > gill > intestine > gonads. To confirm the presence of CYP1A1 in different tissues, EROD activity was measured in presence of the selective inhibitors ellipticine (CYP1A1), ketoconazole (CYP3A), 8-methoxypsoralen (human CYP2A) and diallyl sulphide (CYP2E1). It was found that ellipticine, ketoconazole and 8-methoxypsoralen inhibited hepatic EROD activity by 88-98%. Ellipticine inhibited gill, intestine, and gonad EROD activity by 50%. In conclusion, EROD and BFCOD activities were detected in rainbow trout liver, gill, intestine, heart, brain and gonads. Further studies are needed to fully identify all CYP450 isoforms responsible for these activities. Acknowledgement: The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic - projects „CENAKVA “(No. CZ.1.05/2.1.00/01.0024), “CENAKVA Center Development “(No. CZ.1.05/2.1.00/19.0380), “CENAKVA II “(No. LO1205 under the NPU I program), and "Development of USB - International mobility (No. CZ.02.2.69/0.0/0.0/16_027/0008364).

Keywords: BFCOD, EROD, fish, phase I metabolism, selective inhibitors

Procedia PDF Downloads 151