Search results for: predictive validity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2034

Search results for: predictive validity

1374 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers

Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang

Abstract:

One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.

Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis

Procedia PDF Downloads 436
1373 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 307
1372 Modeling Intention to Use 3PL Services: An Application of the Theory of Planned Behavior

Authors: Nasrin Akter, Prem Chhetri, Shams Rahman

Abstract:

The present study tested Ajzen’s Theory of Planned Behavior (TPB) model to explain the formation of business customers’ intention to use 3PL services in Bangladesh. The findings show that the TPB model has a good fit to the data. Based on theoretical support and suggested modification indices, a refined TPB model was developed afterwards which provides a better predictive power for intention. Consistent with the theory, the results of a structural equation analysis revealed that the intention to use 3PL services is predicted by attitude and subjective norms but not by perceived behavioral control. Further investigation indicated that the paths between (attitude and intention) and (subjective norms and intention) did not statistically differ between 3PL user and non-user. Findings of this research provide an evidence base to formulate business strategies to increase the use of 3PL services in Bangladesh to enhance productivity and to gain economic efficiency.

Keywords: Bangladesh, intention, third-party logistics, Theory of Planned Behavior

Procedia PDF Downloads 580
1371 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 128
1370 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 335
1369 Estimation and Forecasting with a Quantile AR Model for Financial Returns

Authors: Yuzhi Cai

Abstract:

This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.

Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions

Procedia PDF Downloads 345
1368 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the newly developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: demand forecasting, machine learning, risk management, supply chain design

Procedia PDF Downloads 94
1367 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: active flow control, flow-field, OpenFOAM, plasma actuator

Procedia PDF Downloads 304
1366 Financial Literacy and Stock Market Participation: Does Gender Matter?

Authors: Irfan Ullah Munir, Shen Yue, Muhammad Shahzad Ijaz, Saad Hussain, Syeda Yumna Zaidi

Abstract:

Financial literacy is fundamental to every decision-making process and has received attention from researchers, regulatory bodies and policy makers in the recent past. This study is an attempt to evaluate financial literacy in an emerging economy, particularly Pakistan, and its influence on people's stock market participation. Data of this study was collected through a structured questionnaire from a sample of 300 respondents. EFA is used to check the convergent and discriminant validity. Data is analyzed using Hayes (2013) approach. A set of demographic control variables that have passed the mean difference test is used. We demonstrate that participants with financial literacy tend to invest more in the stock market. We also find that association among financial literacy and participation in stock market gets moderated by gender.

Keywords: Financial literacy, Stock market participation, Gender, PSX

Procedia PDF Downloads 197
1365 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 65
1364 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 419
1363 A New Prediction Model for Soil Compression Index

Authors: D. Mohammadzadeh S., J. Bolouri Bazaz

Abstract:

This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP

Procedia PDF Downloads 371
1362 Teaching Strategies and Prejudice toward Immigrant and Disabled Students

Authors: M. Pellerone, S. G. Razza, L. Miano, A. Miccichè, M. Adamo

Abstract:

The teacher’s attitude plays a decisive role in promoting the development of the non-native or disabled student and counteracting hypothetical negative attitudes and prejudice towards those who are “different”.The objective of the present research is to measure the relationship between teachers’ prejudices towards disabled and/or immigrant students as predictors of teaching-learning strategies. A cross-sectional study involved 200 Italian female teachers who completed an anamnestic questionnaire, the Assessment Teaching Scale, the Italian Modern and Classical Prejudices Scale towards people with ID, and the Pettigrew and Meertens’ Blatant Subtle Prejudice Scale. Confirming research hypotheses, data underlines the predictive role of prejudice on teaching strategies, and in particular on the socio-emotional and communicative-relational dimensions. Results underline that general training appears necessary, especially for younger generations of teachers.

Keywords: disabled students, immigrant students, instructional competence, prejudice, teachers

Procedia PDF Downloads 72
1361 Development of a Rating Scale for Elementary EFL Writing

Authors: Mohammed S. Assiri

Abstract:

In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.

Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance

Procedia PDF Downloads 461
1360 Prediction of Childbearing Orientations According to Couples' Sexual Review Component

Authors: Razieh Rezaeekalantari

Abstract:

Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.

Keywords: couples referring, health center, sexual review component, parenting orientations

Procedia PDF Downloads 218
1359 One Plus One is More than Two: Why Nurse Recruiters Need to Use Various Multivariate Techniques to Understand the Limitations of the Concept of Emotional Intelligence

Authors: Austyn Snowden

Abstract:

Aim: To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Background: Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Design: Secondary analysis of existing dataset of responses to TEIQue-SF using concurrent application of Rasch analysis and confirmatory factor analysis. Method: First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis.

Keywords: emotional intelligence, rasch analysis, factor analysis, nurse recruiters

Procedia PDF Downloads 464
1358 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 588
1357 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 175
1356 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.

Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment

Procedia PDF Downloads 76
1355 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 495
1354 Factors Predicting Preventive Behavior for Osteoporosis in University Students

Authors: Thachamon Sinsoongsud, Noppawan Piaseu

Abstract:

This predictive study was aimed to 1) describe self efficacy for risk reduction and preventive behavior for osteoporosis, and 2) examine factors predicting preventive behavior for osteoporosis in nursing students. Through purposive sampling, the sample included 746 nursing students in a public university in Bangkok, Thailand. Data were collected by a self-reported questionnaire on self efficacy and preventive behavior for osteoporosis. Data were analyzed using descriptive statistics and multiple regression analysis with stepwise method. Results revealed that majority of the students were female (98.3%) with mean age of 19.86 + 1.26 years. The students had self efficacy and preventive behavior for osteoporosis at moderate level. Self efficacy and level of education could together predicted 35.2% variance of preventive behavior for osteoporosis (p< .001). Results suggest approaches for promoting preventive behavior for osteoporosis through enhancing self efficacy among nursing students in a public university in Bangkok, Thailand.

Keywords: osteoporosis, self-efficacy, preventive behavior, nursing students

Procedia PDF Downloads 377
1353 Entrepreneurship and the Growth of Small and Medium Enterprises in the Kwara state, Nigeria

Authors: Salman Abdulrasaq

Abstract:

Small and Medium Enterprises (SMEs) has been considered as indices for economic development in a country economy. The development of entrepreneurship skills is therefore necessary. This study, seeks to examine the impact of Entrepreneurship on the Growth of Small Businesses Kwara State, Nigeria. The data used were primarily obtained from the questionnaire administered to the randomly selected areas in the state. Regression statistical tool was employed with aid of SPSS to test the validity of the hypothesis formulated in the study. The study therefore concludes that; the qualities of entrepreneur have impact the growth of Small Businesses s in the selected areas of the state. In view of this, the study recommends that; entrepreneurship development would serve as a tool for the growth of small business enterprises.

Keywords: entrepreneurship, growth, development, Nigeria

Procedia PDF Downloads 404
1352 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 316
1351 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 32
1350 Translation and Validation of the Pain Resilience Scale in a French Population Suffering from Chronic Pain

Authors: Angeliki Gkiouzeli, Christine Rotonda, Elise Eby, Claire Touchet, Marie-Jo Brennstuhl, Cyril Tarquinio

Abstract:

Resilience is a psychological concept of possible relevance to the development and maintenance of chronic pain (CP). It refers to the ability of individuals to maintain reasonably healthy levels of physical and psychological functioning when exposed to an isolated and potentially highly disruptive event. Extensive research in recent years has supported the importance of this concept in the CP literature. Increased levels of resilience were associated with lower levels of perceived pain intensity and better mental health outcomes in adults with persistent pain. The ongoing project seeks to include the concept of pain-specific resilience in the French literature in order to provide more appropriate measures for assessing and understanding the complexities of CP in the near future. To the best of our knowledge, there is currently no validated version of the pain-specific resilience measure, the Pain Resilience scale (PRS), for French-speaking populations. Therefore, the present work aims to address this gap, firstly by performing a linguistic and cultural translation of the scale into French and secondly by studying the internal validity and reliability of the PRS for French CP populations. The forward-translation-back translation methodology was used to achieve as perfect a cultural and linguistic translation as possible according to the recommendations of the COSMIN (Consensus-based Standards for the selection of health Measurement Instruments) group, and an online survey is currently conducted among a representative sample of the French population suffering from CP. To date, the survey has involved one hundred respondents, with a total target of around three hundred participants at its completion. We further seek to study the metric properties of the French version of the PRS, ''L’Echelle de Résilience à la Douleur spécifique pour les Douleurs Chroniques'' (ERD-DC), in French patients suffering from CP, assessing the level of pain resilience in the context of CP. Finally, we will explore the relationship between the level of pain resilience in the context of CP and other variables of interest commonly assessed in pain research and treatment (i.e., general resilience, self-efficacy, pain catastrophising, and quality of life). This study will provide an overview of the methodology used to address our research objectives. We will also present for the first time the main findings and further discuss the validity of the scale in the field of CP research and pain management. We hope that this tool will provide a better understanding of how CP-specific resilience processes can influence the development and maintenance of this disease. This could ultimately result in better treatment strategies specifically tailored to individual needs, thus leading to reduced healthcare costs and improved patient well-being.

Keywords: chronic pain, pain measure, pain resilience, questionnaire adaptation

Procedia PDF Downloads 88
1349 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
1348 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 289
1347 Efforts to Revitalize Piipaash Language: An Explorative Study to Develop Culturally Appropriate and Contextually Relevant Teaching Materials for Preschoolers

Authors: Shahzadi Laibah Burq, Gina Scarpete Walters

Abstract:

Piipaash, representing one large family of North American languages, Yuman, is reported as one of the seriously endangered languages in the Salt River Pima-Maricopa Indian Community of Arizona. In a collaborative venture between Arizona State University (ASU) and Salt River Pima-Maricopa Indian Community (SRPMIC), efforts have been made to revitalize and preserve the Piipaash language and its cultural heritage. The present study is one example of several other language documentation and revitalization initiatives that Humanities Lab ASU has taken. This study was approved to receive a “Beyond the lab” grant after the researchers successfully created a Teaching Guide for Early Childhood Piipaash storybook during their time working in the Humanities Lab. The current research is an extension of the previous project and focuses on creating customized teaching materials and tools for the teachers and parents of the students of the Early Enrichment Program at SRPMIC. However, to determine and maximize the usefulness of the teaching materials with regards to their reliability, validity, and practicality in the given context, this research aims to conduct Environmental Analysis and Need Analysis. Environmental Analysis seeks to evaluate the Early Enrichment Program situation and Need Analysis to investigate the specific and situated requirements of the teachers to assist students in building target language skills. The study employs a qualitative methods approach for the collection of the data. Multiple data collection strategies are used concurrently to gather information from the participants. The research tools include semi-structured interviews with the program administrators and teachers, classroom observations, and teacher shadowing. The researchers utilize triangulation of the data to maintain validity in the process of data interpretation. The preliminary results of the study show a need for culturally appropriate materials that can further the learning of students of the target language as well as the culture, i.e., clay pots and basket-making materials. It was found that the course and teachers focus on developing the Listening and Speaking skills of the students. Moreover, to assist the young learners beyond the classroom, the teachers could make use of send-home teaching materials to reinforce the learning (i.e., coloring books, including illustrations of culturally relevant animals, food, and places). Audio language resources are also identified as helpful additional materials for the parents to assist the learning of the kids.

Keywords: indigenous education, materials development, need analysis, piipaash language revitalizaton

Procedia PDF Downloads 88
1346 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices

Authors: Esmat Mohammadinasab

Abstract:

The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.

Keywords: topological indices, quantum descriptors, DFT method, nanotubes

Procedia PDF Downloads 334
1345 Method of Visual Prosthesis Design Based on Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Zhu Guo Niu, Peng Ying Hong

Abstract:

There are two issues exited in the traditional visual prosthesis: lacking systematic method and the low level of humanization. To tackcle those obstacles, a visual prosthesis design method based on biologically inspired design is proposed. Firstly, a constrained FBS knowledge cell model is applied to construct the functional model of visual prosthesis in biological field. Then the clustering results of engineering domain are ob-tained with the use of the cross-domain knowledge cell clustering algorithm. Finally, a prototype system is designed to support the bio-logically inspired design where the conflict is digested by TRIZ and other tools, and the validity of the method is verified by the solution scheme

Keywords: knowledge-based engineering, visual prosthesis, biologically inspired design, biomedical engineering

Procedia PDF Downloads 188