Search results for: non genetic factors
11345 Development of Transgenic Tomato Immunity to Pepino Mosaic Virus and Tomato Yellow Leaf Curl Virus by Gene Silencing Approach
Authors: D. Leibman, D. Wolf, A. Gal-On
Abstract:
Viral diseases of tomato crops result in heavy yield losses and may even jeopardize the production of these crops. Classical tomato breeding for disease resistance against Tomato yellow leaf curl virus (TYLCV), leads to partial resistance associated with a number of recessive genes. To author’s best knowledge Pepino mosaic virus (PepMV) genetic resistance is not yet available. The generation of viral resistance by means of genetic engineering was reported and implemented for many crops, including tomato. Transgenic resistance against viruses is based, in most cases, on Post Transcriptional Gene Silencing (PTGS), an endogenous mechanism which destroys the virus genome. In this work, we developed immunity against PepMV and TYLCV in a tomato based on a PTGS mechanism. Tomato plants were transformed with a hairpin-construct-expressed transgene-derived double-strand-RNA (tr-dsRNA). In the case of PepMV, the binary construct harbored three consecutive fragments of the replicase gene from three different PepMV strains (Italian, Spanish and American), to provide resistance against a range of virus strains. In the case of TYLCV, the binary vector included three consecutive fragments of the IR, V2 and C2 viral genes constructed in a hairpin configuration. Selected transgenic lines (T0) showed a high accumulation of transgene siRNA of 21-24 bases, and T1 transgenic lines showed complete immunity to PepMV and TYLCV. Graft inoculation displayed immunity of the transgenic scion against PepMV and TYLCV. The study presents the engineering of resistance in tomato against two serious diseases, which will help in the production of high-quality tomato. However, unfortunately, these resistant plants have not been implemented due to public ignorance and opposition against breeding by genetic engineering.Keywords: PepMV, PTGS, TYLCV, tr-dsRNA
Procedia PDF Downloads 13311344 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies
Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro
Abstract:
Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm
Procedia PDF Downloads 11811343 Teachers’ and Students’ Causal Explanations for Classroom Misbehavior: Similarities and Differences
Authors: Rachel C. F. Sun
Abstract:
This study aimed to examine the similarities and differences between teachers’ and students’ causal explanations of classroom misbehavior. In-depth semi-structured interviews were conducted with twelve teachers and eighteen Grade 7-9 students. The qualitative data were analyzed, in which the attributed causes of classroom misbehavior were categorized into student, family, school, and peer factors. Findings showed that both interviewed teachers and students shared similarity in attributing to student factors, such as ‘fun and pleasure seeking’ and ‘attention seeking’ as the leading causes of misbehavior. However, the students accounted to school factors, particularly ‘boring lessons’ as the next attributed causes, while the teachers accounted to family factors, such as ‘lack of parent demandingness’. By delineating the factors at student, family, school, and peer levels, these findings help drawing corresponding implications for preventing and mitigating misbehavior in school.Keywords: causal explanation, misbehavior, student, teacher
Procedia PDF Downloads 35611342 Factorial Design Analysis for Quality of Video on MANET
Authors: Hyoup-Sang Yoon
Abstract:
The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2
Procedia PDF Downloads 41311341 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm
Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim
Abstract:
Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization
Procedia PDF Downloads 8311340 Frequent Pattern Mining for Digenic Human Traits
Authors: Atsuko Okazaki, Jurg Ott
Abstract:
Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.Keywords: digenic traits, DNA variants, epistasis, statistical genetics
Procedia PDF Downloads 12111339 Factors That Affect the Effectiveness of Enterprise Architecture Implementation Methodology
Authors: Babak Darvish Rouhani, Mohd Nazri Mahrin, Fatemeh Nikpay, Pourya Nikfard, Maryam Khanian Najafabadi
Abstract:
Enterprise Architecture (EA) is a strategy that is employed by enterprises in order to align their business and Information Technology (IT). EA is managed, developed, and maintained through Enterprise Architecture Implementation Methodology (EAIM). The effectiveness of EA implementation is the degree in which EA helps to achieve the collective goals of the organization. This paper analyzes the results of a survey that aims to explore the factors that affect the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project. The exploratory factor analysis highlights a specific set of five factors: alignment, adaptiveness, support, binding, and innovation. The regression analysis shows that there is a statistically significant and positive relationship between each of the five factors and the effectiveness of EAIM. Consistent with theory and practice, the most prominent factor for developing an effective EAIM is innovation. The findings contribute to the measuring the effectiveness of EA implementation project by providing an indication of the measurement implementation approaches which is used by the Enterprise Architects, and developing an effective EAIM.Keywords: enterprise architecture, enterprise architecture implementation methodology, implementation methodology, factors, EA, effectiveness
Procedia PDF Downloads 43211338 Role of HLA Typing in Celiac Disease
Authors: Meriche Hacene
Abstract:
Introduction: Celiac disease (CD) is a chronic immune-mediated enteropathy triggered by gluten found in wheat or oats or rye. Celiac disease is associated with the HLA-DQ2 and HLA-DQ8 susceptibility alleles. This association with the HLA DQ2/DQ8 molecules confirmed the responsibility of genetic factors that intervene in the triggering of the autoimmune process of this condition. Objective: To evaluate the results of HLA DQ2 and HLA DQ8 typing of 40 patients suspected of having CD by PCR-SSP (Polymerase Chain Reaction Sequence Specific Primers). Material and method : 40 patients suspected of celiac disease with IgA transglutaminase serology (-) and duodenal biopsy (+). HLADR/DQ PCR-SSP (fluogen-innotrain) typing was carried out. Results : The average age of adults was 40 years, children: 4 years, the sex ratio was 1M/3F. In our patients the HLA DQ2 allele is found with a frequency of 75%, the DQ8 with a frequency of 25%, 17.5% were HLA-DQ2 homozygous and 15% were HLADQ2/HLADQ8. In our series, HLADQ2, DQ8 are found in almost all patients with a frequency of 95%. 30% of patients in our study had associated positivity of HLA-DRB3, DRB4 or DRB5 alleles. Conclusion : A high prevalence of positivity of HLADQ2 alleles at the expense of HLA DQ8 was found, which is consistent with literature data. These molecules constitute an additional marker for screening and diagnosis of CD.Keywords: HLA typing, coeliac disease, HLA DQ 2, HLA DQ8
Procedia PDF Downloads 5611337 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 6111336 A Contrastive Analysis on Hausa and Yoruba Adjectival Phrases
Authors: Abubakar Maikudi
Abstract:
Contrastive analysis is the method of analyzing the structure of any two languages with a view to determining the possible differential aspects of their systems irrespective of their genetic affinity or level of development. Contrastive analysis of two languages becomes useful when it is adequately describing the sound structure and grammatical structure of two languages, with comparative statements giving emphasis to the compatible items in the two systems. This research work uses comparative analysis theory to analyze adjective and adjectival phrases in Hausa and Yorùbá languages. The Hausa language belongs to the Chadic family of the Afro-Asiatic phylum, while the Yorùbá language belongs to the Benue-Congo family of the Niger-Congo phylum. The findings of the research clearly demonstrated that there are significant similarities in the adjectival phrase constructions of the two languages, i.e., nominal (Head) and post-nominal (Post-Head) use of the adjective, predicative function of an adjective, use of the reduplicative adjective, use of the comparative and superlative adjective, etc. However, there are dissimilarities in the adjectival phrase of the two languages in gender/number agreement and pre-nominal (Post-Head) use of adjectives.Keywords: genetic affinity, contrastive analysis, phylum, pre-head, post-head
Procedia PDF Downloads 23011335 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 30011334 Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients
Authors: Agnieszka H. Ludwig-Slomczynska, Michal T. Seweryn, Przemyslaw Kapusta, Ewelina Pitera, Katarzyna Cyganek, Urszula Mantaj, Lucja Dobrucka, Ewa Wender-Ozegowska, Maciej T. Malecki, Pawel Wolkow
Abstract:
Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis.Keywords: body mass index, epistasis, mitochondria, type 1 diabetes
Procedia PDF Downloads 17411333 CMT4G: Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient
Authors: Dana Gabriková, Martin Mistrík, Jarmila Bernasovská, Iveta Tóthová, Jana Kisková
Abstract:
The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.Keywords: gypsies, HK1, HSMN-Russe, rare disease
Procedia PDF Downloads 38711332 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 45411331 Atypical Familial Amyotrophic Lateral Sclerosis Secondary to Superoxide Dismutase 1 Gene Mutation With Coexistent Axonal Polyneuropathy: A Challenging Diagnosis
Authors: Seraj Makkawi, Abdulaziz A. Alqarni, Himyan Alghaythee, Suzan Y. Alharbi, Anmar Fatani, Reem Adas, Ahmad R. Abuzinadah
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disease that involves both the upper and lower motor neurons. Familial ALS, including superoxide dismutase 1 (SOD1) mutation, accounts for 5-10% of all cases of ALS. Typically, the symptoms of ALS are purely motor, though coexistent sensory symptoms have been reported in rare cases. In this report, we describe the case of a 47- year-old man who presented with progressive bilateral lower limb weakness and numbness for the last four years. A nerve conduction study (NCS) showed evidence of coexistent axonal sensorimotor polyneuropathy in addition to the typical findings of ALS in needle electromyography. Genetic testing confirmed the diagnosis of familial ALS secondary to the SOD1 genetic mutation. This report highlights that the presence of sensory symptoms should not exclude the possibility of ALS in an appropriate clinical setting.Keywords: Saudi Arabia, polyneuropathy, SOD1 gene mutation, familial amyotrophic lateral sclerosis, amyotrophic lateral sclerosis
Procedia PDF Downloads 14811330 The Effects of Acupoint Catgut Embedding for Weight Control in Mice Model
Authors: Chanya Inprasit, Ching-Liang Hsieh, Yi-Wen Lin
Abstract:
Obesity (OB) is a hazardous global health problem that has been increasing in prevalence, more severely in last decade. It is the mainly resultant from the imbalance between food consumption and energy expenditure, which is concordant with a modern lifestyle, implying an increase in calories with poorer quality of food intake accompanied by a decrease in physical activities. Obesity does not concern the appearance only but is also a major factor contributing to poor physiology, psychology, society and economic issues. Moreover, OB induces low-grade inflammation in the body through the regulatory effect it enacts on the adipocyte function. Various alternative treatments were investigated for body weight control, including Acupoint Catgut Embedding (ACE). ACE is the implantation of absorbable catgut sutures at specific acupoints, displaying durable and potent stimulation and thereby reducing the treatment frequency. Our study utilized a mouse model to exclude any psychological factors of OB and ACE treatment. High-fat diet and body weight were measured once a week before subjects in ACE and Sham group received the ACE treatment or placebo treatment. We hypothesized that ACE can control body weight through the interaction of the TRPV1 pathways, as TRPV1 accordingly responds to inflammatory factors. The results of body weight variation show a significant decrease in body weight in ACE group compared with the baseline of control and Sham group. Meanwhile, converse results were explored in TRPV1 knockout mice, where a significant maintenance of normal body weight throughout the experiment period was observed. There was no significant difference in food consumption of each group. These finding indicated that TRPV1 pathways and its associated pathways may be involved in the maintenance of body weight, which can be controlled by ACE treatment of genetic manipulation.Keywords: acupoint catgut embedding, obesity, hypothalamus, TRPV1
Procedia PDF Downloads 15111329 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units
Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro
Abstract:
In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.Keywords: capacitated clustering, k-means, genetic algorithm, districting problems
Procedia PDF Downloads 19811328 Developmental Difficulties Prevalence and Management Capacities among Children Including Genetic Disease in a North Coastal District of Andhra Pradesh, India: A Cross-sectional Study
Authors: Koteswara Rao Pagolu, Raghava Rao Tamanam
Abstract:
The present study was aimed to find out the prevalence of DD's in Visakhapatnam, one of the north coastal districts of Andhra Pradesh, India during a span of five years. A cross-sectional investigation was held at District early intervention center (DEIC), Visakhapatnam from 2016 to 2020. To identify the pattern and trend of different DD's including seasonal variations, a retrospective analysis of the health center's inpatient database for the past 5 years was done. Male and female children aged 2 months-18 years are included in the study with the prior permission of the concerned medical officer. The screening tool developed by the Ministry of health and family welfare, India, was used for the study. Among 26,423 cases, children with birth defects are 962, 2229 with deficiencies, 7516 with diseases, and 15716 with disabilities were admitted during the study period. From birth defects, congenital deafness occurred in large numbers with 22.66%, and neural tube defect observed in a small number of cases with 0.83% during the period. From the side of deficiencies, severe acute malnutrition has mostly occurred (66.80 %) and a small number of children were affected with goiter (1.70%). Among the diseases, dental carriers (67.97%) are mostly found and these cases were at peak during the years 2016 and 2019. From disabilities, children with vision impairment (20.55%) have mostly approached the center. Over the past 5 years, the admission rate of down's syndrome and congenital deafness cases showed a rising trend up to 2019 and then declined. Hearing impairment, motor delay, and learning disorder showed a steep rise and gradual decline trend, whereas severe anemia, vitamin-D deficiency, otitis media, reactive airway disease, and attention deficit hyperactivity disorder showed a declining trend. However, congenital heart diseases, dental caries, and vision impairment admission rates showed a zigzag pattern over the past 5 years. This center had inadequate diagnostic facilities related to genetic disease management. For advanced confirmation, the cases are referred to a district government hospital or private diagnostic laboratories in the city for genetic tests. Information regarding the overall burden and pattern of admissions in the health center is obtained by the review of DEIC records. Through this study, it is observed that the incidence of birth defects, as well as genetic disease burden, is high in the Visakhapatnam district. Hence there is a need for strengthening of management services for these diseases in this region.Keywords: child health screening, developmental delays, district early intervention center, genetic disease management, infrastructural facility, Visakhapatnam district
Procedia PDF Downloads 21311327 The Reasons for the Continuous Decline in the Quality of Higher Education in Iran, with a Case Study of Students at Tehran University Law School
Authors: Mohammad Matin
Abstract:
Nowadays, one of the basic problems of higher education is a significant decline in the quality of education and reduction in efficiency of training. These research and studies are aiming to assess affecting factors of the erosion of academic quality, including educational environmental and content, social and economic factors, elements of the training, elements of education, family factors, from the perspective of students. The result of such improper competition, totally, has led to the decline of education quality in higher education centers, and in many aspects. The results showed a significant difference between male and female students' perspective for two areas of social and economic factors.Keywords: higher education, decline, the quality of education, student
Procedia PDF Downloads 34111326 Age Related Changes in the Neural Substrates of Emotion Regulation: Mechanisms, Consequences, and Interventions
Authors: Yasaman Mohammadi
Abstract:
Emotion regulation is a complex process that allows individuals to manage and modulate their emotional responses in order to adaptively respond to environmental demands. As individuals age, emotion regulation abilities may decline, leading to an increased vulnerability to mood disorders and other negative health outcomes. Advances in neuroimaging techniques have greatly enhanced our understanding of the neural substrates underlying emotion regulation and age-related changes in these neural systems. Additionally, genetic research has identified several candidate genes that may influence age-related changes in emotion regulation. In this paper, we review recent findings from neuroimaging and genetic research on age-related changes in the neural substrates of emotion regulation, highlighting the mechanisms and consequences of these changes. We also discuss potential interventions, including cognitive and behavioral approaches, that may be effective in mitigating age-related declines in emotion regulation. We propose that a better understanding of the mechanisms underlying age-related changes in emotion regulation may lead to the development of more targeted interventions aimed at promoting healthy emotional functioning in older adults. Overall, this paper highlights the importance of studying age-related changes in emotion regulation and provides a roadmap for future research in this field.Keywords: emotion regulation, aging, neural substrates, neuroimaging, emotional functioning, healthy aging
Procedia PDF Downloads 11211325 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic
Procedia PDF Downloads 48611324 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 6511323 A Review: The Impact of Core Quality the Empirical Review of Critical Factors on the Causes of Delay in Road Constructions Projects in the GCC Countries
Authors: Sulaiman Al-Hinai, Setyawan Widyarto
Abstract:
The aim of this study is to identify the critically dominating factors on the delays of road constructions in the GCC countries and their effects on project delivery in Arab countries. Towards the achieved of the objectives the study used the empirical literature from the all relevant online sources and database as many as possible. The findings of this study have summarized and short listed of the success factors in the two categories such as internal and external factors have caused to be influenced to delay of road constructions in the Arab regions. However, in the category of internal factors, there are 63 factors short listed from seven group of factors which has revealed to effects on the delay of road constructions especially, the consultant related factors, the contractor related factors, designed related factors, client related factors, labor related factors, material related issues, equipment related issues respectively. Moreover, for external related factors are also considered to summarized especially natural disaster (flood, hurricanes and cyclone etc.), conflict, war, global financial crisis, compensation delay to affected property owner, price fluctuated, unexpected ground conditions (soil and high-water level), changing of government regulations and laws, delays in obtaining permission from municipality, loss of time by traffic control and restrictions at job site, problem with inhabitant of community, delays in providing service from utilities (water and electricity’s) and accident during constructions accordingly. The present study also concluded the effects of above factors which has delay road constructions through increasing of cost and overrun it, taken overtime, creating of disputes, going for lawsuits, finally happening of abandon of projects. Thus, the present study has given the following recommendations to overcome of above problems by increasing of detailed site investigations, ensure careful monitoring and regular meetings, effective site management, collaborative working and effective coordination’s, proper and comprehensive planning and scheduling and ensure full and intensive commitment from all parties accordingly.Keywords: Arab GCC countries, critical success factors, road constructions delay, project management
Procedia PDF Downloads 12711322 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects
Authors: Mai Ghazal, Ahmed Hammad
Abstract:
Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management
Procedia PDF Downloads 36911321 Comparative Analysis of the Performance Between Public and Private Companies: Explanatory Factors
Authors: Atziri Moreno Vite, David Silva Gutiérrez
Abstract:
Oil companies have become the key player in the world energy scenario thanks to their strong control of the level of hydrocarbon reserves and production. The present research aims to identify the main factors that explain the results of these companies through an in-depth review of the specialized literature and to analyze the results of these companies by means of econometric analysis with techniques such as Data Envelopment Analysis (DEA). The results show the relevance and impact of factors such as the level of employment or investment of the company.Keywords: oil companies, performance, determinants, productive
Procedia PDF Downloads 12411320 The Incidence of Acetylcholine Receptor Antibody Positive Myasthenia Gravis in South Africa
Authors: Mombaur Busisiwe, Lesosky Maia, Liebenberg Lisa, Heckmann Jeannine
Abstract:
Introduction: To assess age- and gender-specific incidence rates (IR) of acetylcholine receptor (AChR)-antibody positive myasthenia gravis (MG) in South Africa, and geographical variation in incidence. Methods: IRs were calculated from positive AChR antibody laboratory data between 2011 and 2012, using 2011 population census data. Results:890 individuals were seropositive, for an annual IR of 8.5 per million. Age-standardized IR for early- (< 50) and late-onset (≥ 50) MG were 4.1 and 24 per million, respectively, and for juveniles, 4.3 per million. The IR between provinces ranged from 1 to 19 per million. Conclusions: In this Southern hemisphere African population, the overall IR and peak IR (in older men) for seropositive MG is comparable to that in Europe and North America, arguing against environmental factors. However, IRs may be higher among children with African genetic ancestry. Geographical variation in incidence underscores the importance of outreach programs for regions with limited resources.Keywords: incidence rates (IR), acetylcholine receptor (AChR), myasthenia gravis (MG), South Africa
Procedia PDF Downloads 49311319 Marketing Factors Influencing the Decision to Choose Low Cost Airlines
Authors: Noppadol Sritragool
Abstract:
The objectives of this research were to investigate the decision of passengers who choose to fry with low cost airlines and to study marketing factors which have the influence to the decision to choose each low cost airlines. This paper was a quantitative research technique. A total of 400 low cost airlines’ passengers were interviewed via English questionnaire to collect the respondents’ opinions. The findings revealed that respondents were male and female at a similar proportion. The majority had at least an undergraduate degree, have a lower management level jobs, and had income in the range of 25,000 -35,000 baht per month.. In addition, the findings also revealed that the first three marketing factors influencing the decision of the respondents to choose low-cost airlines were low price, direct flight, and online system.Keywords: decision to choose, marketing factors, low-cost airlines
Procedia PDF Downloads 42711318 An Analysis of Critical Success Factors of Six Sigma Implementation in Pakistani SMEs
Authors: Zanjbeel Tabassum
Abstract:
The main purpose of any economic investment is to get profit at the end. As the investment in large organizations bears complexities, investors are influenced to invest in small or medium enterprises. With the increase of global competition in terms of quality and productivity, these small and medium-sized enterprises (SMEs) are trying to convert to modern production practices using Six Sigma. But this concept is still lacking in Pakistani SMEs. There are some critical success factors which influence the successful implementation of Six Sigma. Through this paper, an attempt has been made to identify various CSF for successful implementation of Six Sigma in Pakistani SMEs with the help of a structured survey. On the basis of responses to the questionnaire, factor analysis is performed on the selected critical success factors (from literature) to prioritize the critical factors and those are rated by calculating descriptive statistics. This paper will provide a base for Pakistani SMEs and future researchers working in six sigma implementation and help them to prepare a road map to eradicate the hurdles in six sigma implementation.Keywords: critical success factors, SMEs, Six Sigma, CSF
Procedia PDF Downloads 27811317 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System
Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano
Abstract:
The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers
Procedia PDF Downloads 32611316 Key Factors for Stakeholder Engagement and Sustainable Development
Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng
Abstract:
The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility
Procedia PDF Downloads 513