Search results for: liquid mixing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2659

Search results for: liquid mixing

1999 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 163
1998 Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids

Authors: Saheli Mitra, Ramesh Karri, Praveen K. Mylapalli, Arka. B. Dey, Gourav Bhattacharya, Gouriprasanna Roy, Syed M. Kamil, Surajit Dhara, Sunil K. Sinha, Sajal K. Ghosh

Abstract:

The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates.

Keywords: lyotropic liquid crystals, polarizing optical microscopy, rheology, surfactants, small angle x-ray diffraction

Procedia PDF Downloads 136
1997 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 187
1996 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 162
1995 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 133
1994 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 83
1993 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle

Procedia PDF Downloads 143
1992 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 109
1991 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves

Authors: T. J. Hasanova, C. N. Imamalieva

Abstract:

The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.

Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave

Procedia PDF Downloads 317
1990 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 292
1989 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System

Authors: Asif Mahmood, Yousef Alzeghayer

Abstract:

The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.

Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics

Procedia PDF Downloads 210
1988 In-situ Fabrication of Silver-PDMS Nanocomposite Membrane with Application in Olefine Separation

Authors: P. Tirgarbahnamiri, S. Mahravani, N. Haddadpour, F. Yaghmaie, F. Barazandeh

Abstract:

In this study, silver nanoparticle-Polydimethylsiloxane membrane (SNP-PDMS) was prepared with an in-situ reduction method using AgNO3 in poly (dimethylsiloxane) hardener. Optical and mechanical properties as well as functionality of these membranes were determined employing, UV-Vis spectrophotometry, FTIR, strain-stress test and liquid/liquid filtration measurements. Silver nanoparticles are known to selectively absorb Olefins and may be used for separation of Alkanes from olefins. Yellow color of silver nanocomposites and transparency of blank polymer were observed employing optical microscope. λmax in 415-420 nm regions in UV-Vis spectrophotometry are related to silver nanoparticles absorbance. Based on stress-strain test results, tensile strength of silver nanoparticle PDMS (SNP-PDMS) membranes is higher than PDMS films of comparable size and thickness. Moreover, permeability of SNP-PDMS membranes were characterized using similar olefin/paraffin pair using a simple bench scale separation set- up. The silver -PDMS membranes retain their color and UV-vis characteristics for extended periods of time exceeding several months.

Keywords: nanocomposite membrane, gas separation, facilitated transport, silver nanocomposite, PDMS, in-situ reduction

Procedia PDF Downloads 330
1987 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation

Authors: Carlos Riascos, Peter Thomson

Abstract:

Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy

Procedia PDF Downloads 296
1986 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids

Authors: Rasike De Silva, Xungai Wang, Nolene Byrne

Abstract:

We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.

Keywords: textile materials, bio polymers, ionic liquids, duck feather

Procedia PDF Downloads 478
1985 Optimization of Oxygen Plant Parameters Simulating with MATLAB

Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki

Abstract:

Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.

Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB

Procedia PDF Downloads 321
1984 Numerical Investigation on the Effect of Aluminium Nanoparticles on Characteristic Velocity of Kerosene-Oxygen Combustion

Authors: Al Ameen H., Rakesh P.

Abstract:

To improve the combustion efficiency of fuels and to reduce the emissions of pollutants as well as to improve heat transfer characteristics of fuels, both non-metallic and metallic nanoparticles can be added into it. By varying the concentration and size of nano particles added into the fuels, behaviour of droplet combustion and hence heat generated can be altered. In case of solid or liquid fuels, surface area of the fuel in contact with oxidizer(gaseous) is small because of higher density compared to gases. If the surface area of fuel exposed to the oxidizer is very small, then the combustion will not occur, because the combustion rate is proportional to the surface area of fuel droplet. To avoid such instance there is a way to increase the exposed surface area. To increase the specific surface area available for reaction, the particle size can be reduced. If the additives are solid then by reducing the particles size the specific surface area of liquid fuel can be increased. For the liquid fuels the exposed surface area available for combustion can be increased by suspending nanoparticles. Addition of non-metallic and metallic nanoparticles in fuels improves its combustion efficiency by enhancing the thermo-physical properties. The burn rate constants and temperatures of Kerosene-Oxygen combustion for fuel droplet sizes of 50μm, 75μm, 100μm and 125μm under varying concentrations of 25%, 50%, 75% and 100% are studied numerically and its characteristic velocities are determined. Later the burn rate constants of fuel with concentrations of 0.5%, 1.0% and 2.0% by weight of aluminium nanoparticles are added. The spray combustion characteristics of such nano-fuel has improved the combustion temperature by the addition of aluminium nanoparticles. Thus, aluminium nanoparticles have improved burn rate and characteristic velocity of Kerosene-Oxygen combustion. An increase of 40% in characteristic velocity is observed.

Keywords: burn rate, characteristic velocity, combustion, thermo-physical properties

Procedia PDF Downloads 92
1983 Environmental Evaluation of Two Kind of Drug Production (Syrup and Pomade Form) Using Life Cycle Assessment Methodology

Authors: H. Aksas, S. Boughrara, K. Louhab

Abstract:

The goal of this study was the use of life cycle assessment (LCA) methodology to assess the environmental impact of pharmaceutical product (four kinds of syrup form and tree kinds of pomade form), which are produced in one leader manufactory in Algeria town that is SAIDAL Company. The impacts generated have evaluated using SimpaPro7.1 with CML92 Method for syrup form and EPD 2007 for pomade form. All impacts evaluated have compared between them, with determination of the compound contributing to each impacts in each case. Data needed to conduct Life Cycle Inventory (LCI) came from this factory, by the collection of theoretical data near the responsible technicians and engineers of the company, the practical data are resulting from the assay of pharmaceutical liquid, obtained at the laboratories of the university. This data represent different raw material imported from European and Asian country necessarily to formulate the drug. Energy used is coming from Algerian resource for the input. Outputs are the result of effluent analysis of this factory with different form (liquid, solid and gas form). All this data (input and output) represent the ecobalance.

Keywords: pharmaceutical product, drug residues, LCA methodology, environmental impacts

Procedia PDF Downloads 245
1982 Acoustic Radiation Pressure Detaches Myoblast from Culture Substrate by Assistance of Serum-Free Medium

Authors: Yuta Kurashina, Chikahiro Imashiro, Kiyoshi Ohnuma, Kenjiro Takemura

Abstract:

Research objectives and goals: To realize clinical applications of regenerative medicine, a mass cell culture is highly required. In a conventional cell culture, trypsinization was employed for cell detachment. However, trypsinization causes proliferation decrease due to injury of cell membrane. In order to detach cells using an enzyme-free method, therefore, this study proposes a novel cell detachment method capable of detaching adherent cells using acoustic radiation pressure exposed to the dish by the assistance of serum-free medium with ITS liquid medium supplement. Methods used In order to generate acoustic radiation pressure, a piezoelectric ceramic plate was glued on a glass plate to configure an ultrasonic transducer. The glass plate and a chamber wall compose a chamber in which a culture dish is placed in glycerol. Glycerol transmits acoustic radiation pressure to adhered cells on the culture dish. To excite a resonance vibration of transducer, AC signal with 29-31 kHz (swept) and 150, 300, and 450 V was input to the transducer for 5 min. As a pretreatment to reduce cell adhesivity, serum-free medium with ITS liquid medium supplement was spread to the culture dish before exposed to acoustic radiation pressure. To evaluate the proposed cell detachment method, C2C12 myoblast cells (8.0 × 104 cells) were cultured on a ø35 culture dish for 48 hr, and then the medium was replaced with the serum-free medium with ITS liquid medium supplement for 24 hr. We replaced the medium with phosphate buffered saline and incubated cells for 10 min. After that, cells were exposed to the acoustic radiation pressure for 5 min. We also collected cells by using trypsinization as control. Cells collected by the proposed method and trypsinization were respectively reseeded in ø60 culture dishes and cultured for 24 hr. Then, the number of proliferated cells was counted. Results achieved: By a phase contrast microscope imaging, shrink of lamellipodia was observed before exposed to acoustic radiation pressure, and no cells remained on the culture dish after the exposed of acoustic radiation pressure. This result suggests that serum-free medium with ITS liquid inhibits adhesivity of cells and acoustic radiation pressure detaches cells from the dish. Moreover, the number of proliferated cells 24 hr after collected by the proposed method with 150 and 300 V is the same or more than that by trypsinization, i.e., cells were proliferated 15% higher with the proposed method using acoustic radiation pressure than with the traditional cell collecting method of trypsinization. These results proved that cells were able to be collected by using the appropriate exposure of acoustic radiation pressure. Conclusions: This study proposed a cell detachment method using acoustic radiation pressure by the assistance of serum-free medium. The proposed method provides an enzyme-free cell detachment method so that it may be used in future clinical applications instead of trypsinization.

Keywords: acoustic radiation pressure, cell detachment, enzyme free, ultrasonic transducer

Procedia PDF Downloads 253
1981 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 236
1980 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 405
1979 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 287
1978 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 68
1977 Photophysical Study of Pyrene Butyric Acid in Aqueous Ionic Liquid

Authors: Pratap K. Chhotaray, Jitendriya Swain, Ashok Mishra, Ramesh L. Gardas

Abstract:

Ionic liquids (ILs) are molten salts, consist predominantly of ions and found to be liquid below 100°C. The unparalleled growing interest in ILs is based upon their never ending design flexibility. The use of ILs as a co-solvent in binary as well as a ternary mixture with molecular solvents multifold it’s utility. Since polarity is one of the most widely applied solvent concepts which represents simple and straightforward means for characterizing and ranking the solvent media, its study for a binary mixture of ILs is crucial for its widespread application and development. The primary approach to the assessment of solution phase intermolecular interactions, which generally occurs on the picosecond to nanosecond time scales, is to exploit the optical response of photophysical probe. Pyrene butyric acid (PBA) is used as fluorescence probe due to its high quantum yield, longer lifetime and high solvent polarity dependence of fluorescence spectra. Propylammonium formate (PAF) is the IL used for this study. Both the UV-absorbance spectra and steady state fluorescence intensity study of PBA in different concentration of aqueous PAF, reveals that with an increase in PAF concentration, both the absorbance and fluorescence intensity increases which indicate the progressive solubilisation of PBA. Whereas, near about 50% of IL concentration, all of the PBA molecules get solubilised as there are no changes in the absorbance and fluorescence intensity. Furthermore, the ratio II/IV, where the band II corresponds to the transition from S1 (ν = 0) to S0 (ν = 0), and the band IV corresponds to transition from S1 (ν = 0) to S0 (ν = 2) of PBA, indicates that the addition of water into PAF increases the polarity of the medium. Time domain lifetime study shows an increase in lifetime of PBA towards the higher concentration of PAF. It can be attributed to the decrease in non-radiative rate constant at higher PAF concentration as the viscosity is higher. The monoexponential decay suggests that homogeneity of solvation environment whereas the uneven width at full width at half maximum (FWHM) indicates there might exist some heterogeneity around the fluorophores even in the water-IL mixed solvents.

Keywords: fluorescence, ionic liquid, lifetime, polarity, pyrene butyric acid

Procedia PDF Downloads 457
1976 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample

Authors: Kara J. Coffman-Rea, Karen E. Samonds

Abstract:

Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.

Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification

Procedia PDF Downloads 255
1975 Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction

Authors: Ergun Kaya

Abstract:

Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets.

Keywords: droplet vitrification, hazelnut, liquid nitrogen, PVS2

Procedia PDF Downloads 158
1974 Metal Extraction into Ionic Liquids and Hydrophobic Deep Eutectic Mixtures

Authors: E. E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M. F. Volia, C. M. Folden III

Abstract:

Room temperature ionic liquids (RTILs) are a class of liquid organic salts with melting points below 20 °C that are considered to be environmentally friendly ‘designers’ solvents. Pure hydrophobic ILs are known to extract metallic species from aqueous solutions. The closest analogues of ionic liquids are deep eutectic solvents (DESs), which are a eutectic mixture of at least two compounds with a melting point lower than that of each individual component. DESs are acknowledged to be attractive for organic synthesis and metal processing. Thus, these non-volatile and less toxic compounds are of interest for critical metal extraction. The US Department of Energy and the European Commission consider indium as a key metal. Its chemical homologue, thallium, is also an important material for some applications and environmental safety. The aim of this work is to systematically investigate In and Tl extraction from aqueous solutions into pure fluorinated ILs and hydrophobic DESs. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. The extraction efficiency of the TlXz3–z anionic species (where X = Cl– and/or Br–) is greater for ionic liquids with more hydrophobic cations. Unexpectedly high distribution ratios (> 103) of Tl(III) were determined even by applying a pure ionic liquid as receiving phase. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the co-extraction of two different anionic species, and the relative contributions of each mechanism have been determined. The first evidence of indium extraction into new quaternary ammonium- and menthol-based hydrophobic DESs from hydrochloric and oxalic acid solutions with distribution ratios up to 103 will be provided. Data obtained allow us to interpret the mechanism of thallium and indium extraction into ILs and DESs media. The understanding of Tl and In chemical behavior in these new media is imperative for the further improvement of separation and purification of these elements.

Keywords: deep eutectic solvents, indium, ionic liquids, thallium

Procedia PDF Downloads 239
1973 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 201
1972 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: compressive strength, coupling effect, statistical analysis, ultrasonic

Procedia PDF Downloads 320
1971 The Determination of Aflatoxins in Paddy and Milled Fractions of Rice in Guyana: Preliminary Results

Authors: Donna M. Morrison, Lambert Chester, Coretta A. N. Samuels, David R. Ledoux

Abstract:

A survey was conducted in the five rice-growing regions in Guyana to determine the presence of aflatoxins in multiple fractions of rice in June/October 2015 growing season. The fractions were paddy, steamed paddy, cargo rice, white rice and parboiled rice. Samples were analyzed by High Performance Liquid Chromatography. A subset of the samples was further analyzed by enzyme-linked immunosorbent assay (ELISA) for concurrence. All analyses were conducted at the University of Missouri, USA. Of the 186 samples tested, 16 had aflatoxin concentrations greater than 20 ppb the recommended limit for aflatoxins in food according to the United States Food and Drug Administration. An additional three samples had aflatoxin B1 concentrations greater than the European Union Commission maximum levels for aflatoxin B1 in rice at 5 µg/kg and total aflatoxins (B1, B2, G1 and G2) at 10 µg/kg. The survey indicates that there is no widespread aflatoxin problem in rice in Guyana. The incidence of aflatoxins appears to be localized.

Keywords: aflatoxin, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), rice fractions

Procedia PDF Downloads 263
1970 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 238