Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26388

Search results for: linked data

25728 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 395
25727 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 141
25726 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption

Authors: Darusalam, Jorish Hulstijn, Marijn Janssen

Abstract:

Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.

Keywords: open data, accountability, anti-corruption, framework

Procedia PDF Downloads 339
25725 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach

Authors: Nina Ponikvar, Katja Zajc Kejžar

Abstract:

While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.

Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia

Procedia PDF Downloads 80
25724 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 98
25723 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 121
25722 English as a Medium of Instruction in Algerian Higher Business Degree Programmes

Authors: Sidi Ahmed Berrabah

Abstract:

English as a Medium of Instruction (EMI) is expanding rapidly in the world. A growing volume of research has been dedicated to investigating its introduction, with findings that describe a complex picture and suggest that the practicality and effectiveness of EMI are still the subjects of debate. However, considerably less attention has been given to understanding EMI in a context where its introduction has been discussed but not yet put into practice. One such context is Algeria, where discourses about a potential introduction of EMI have been going on for some time. It is likely that the first courses where EMI is introduced are Business degree programmes. This study aims to examine the current discourses and attitudes towards the potential implementation of EMI and the language practices in Business degree programmes in three Algerian universities. The research is conducted in three different universities in three different regions in Algeria with the aim of including both ‘centre’ and ‘periphery’ Algerian universities. In order to achieve the previous aims, a mixed research paradigm is used. Questionnaires, semi structured interviews, and classroom observations are used to gather data from three participant cohorts: university students of Business, lecturers of Business, and lecturers of English for specific purposes. The findings showed that students and lecturers of Business are found in favour of the introduction of English instead of French or standard Arabic as a medium of instruction. The reason is that English is seen as having internationalisation and instrumental benefits, while French was too closely linked to the colonial history of the country. The favourable attitudes towards EMI, however, seem to contrast with the daily classroom practices at the departments of Business studies, where students and lecturers make practical choices of using their language repertoire based on their linguistic background and skills. Classrooms in the three Algerian universities featured fluid and translanguaging practices that cannot be reduced to a monolingual EMI policy.

Keywords: EMI, Algerian universities, business degree programmes, translanguaging

Procedia PDF Downloads 221
25721 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

Authors: Yuyun Wabula, B. J. Dewancker

Abstract:

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Keywords: geolocation, Twitter, distribution analysis, human mobility

Procedia PDF Downloads 316
25720 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 662
25719 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 408
25718 Childhood Adversity and Delinquency in Youth: Self-Esteem and Depression as Mediators

Authors: Yuhui Liu, Lydia Speyer, Jasmin Wertz, Ingrid Obsuth

Abstract:

Childhood adversities refer to situations where a child's basic needs for safety and support are compromised, leading to substantial disruptions in their emotional, cognitive, social, or neurobiological development. Given the prevalence of adversities (8%-39%), their impact on developmental outcomes is challenging to completely avoid. Delinquency is an important consequence of childhood adversities, given its potential causing violence and other forms of victimisation, influencing victims, delinquents, their families, and the whole of society. Studying mediators helps explain the link between childhood adversity and delinquency, which aids in designing effective intervention programs that target explanatory variables to disrupt the path and mitigate the effects of childhood adversities on delinquency. The Dimensional Model of Adversity and Psychopathology suggests that threat-based adversities influence outcomes through emotion processing, while deprivation-based adversities do so through cognitive mechanisms. Thus, considering a wide range of threat-based and deprivation-based adversities and their co-occurrence and their associations with delinquency through cognitive and emotional mechanisms is essential. This study employs the Millennium Cohort Study, tracking the development of approximately 19,000 individuals born across England, Scotland, Wales and Northern Ireland, representing a nationally representative sample. Parallel mediation models compare the mediating roles of self-esteem (cognitive) and depression (affective) in the associations between childhood adversities and delinquency. Eleven types of childhood adversities were assessed both individually and through latent class analysis, considering adversity experiences from birth to early adolescence. This approach aimed to capture how threat-based, deprived-based, or combined threat and deprived-based adversities are associated with delinquency. Eight latent classes were identified: three classes (low adversity, especially direct and indirect violence; low childhood and moderate adolescent adversities; and persistent poverty with declining bullying victimisation) were negatively associated with delinquency. In contrast, three classes (high parental alcohol misuse, overall high adversities, especially regarding household instability, and high adversity) were positively associated with delinquency. When mediators were included, all classes showed a significant association with delinquency through depression, but not through self-esteem. Among the eleven single adversities, seven were positively associated with delinquency, with five linked through depression and none through self-esteem. The results imply the importance of affective variables, not just for threat-based but also deprivation-based adversities. Academically, this suggests exploring other mechanisms linking adversities and delinquency since some adversities are linked through neither depression nor self-esteem. Clinically, intervention programs should focus on affective variables like depression to mitigate the effects of childhood adversities on delinquency.

Keywords: childhood adversity, delinquency, depression, self-esteem

Procedia PDF Downloads 38
25717 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 88
25716 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 292
25715 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections among Prisoners in Tigrai, Northern Ethiopia

Authors: Belaynesh Tsegay Beyene, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader

Abstract:

Background: Hepatitis B and C viruses are of important health and socioeconomic problem of the globe with remarkable diseases and deaths in Sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigrai. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners of Tigrai, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigrai. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliter of blood was collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using enzyme-linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using Statistical Package for Social Sciences (SPSS) version 20 and p < 0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1(0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18-25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell [AOR =3.95, 95% CI= (1.15, 13.6, p =0.029)] and having history of alcohol consumption [AOR =3.01, 95% CI= (1.17, 7.74, p =0.022)] were significantly associated with HBV infections. Conclusions: The seroprevalence of HBV among prisoners was nearly high or borderline (7.9%) with a very low HCV prevalence (0.3%). HBV was most prevalent among young adults, large number of prisoners per cell and those who had history of alcohol consumption. This study recommends that there should be prison-focused intervention including regular health education by emphasis on the mode of transmission and introducing HBV screening policy for prisoners especially when they enter to the prison.

Keywords: seroprevalence, HBV, HCV, prisoners, Tigrai

Procedia PDF Downloads 79
25714 Regulation on the Protection of Personal Data Versus Quality Data Assurance in the Healthcare System Case Report

Authors: Elizabeta Krstić Vukelja

Abstract:

Digitization of personal data is a consequence of the development of information and communication technologies that create a new work environment with many advantages and challenges, but also potential threats to privacy and personal data protection. Regulation (EU) 2016/679 of the European Parliament and of the Council is becoming a law and obligation that should address the issues of personal data protection and information security. The existence of the Regulation leads to the conclusion that national legislation in the field of virtual environment, protection of the rights of EU citizens and processing of their personal data is insufficiently effective. In the health system, special emphasis is placed on the processing of special categories of personal data, such as health data. The healthcare industry is recognized as a particularly sensitive area in which a large amount of medical data is processed, the digitization of which enables quick access and quick identification of the health insured. The protection of the individual requires quality IT solutions that guarantee the technical protection of personal categories. However, the real problems are the technical and human nature and the spatial limitations of the application of the Regulation. Some conclusions will be drawn by analyzing the implementation of the basic principles of the Regulation on the example of the Croatian health care system and comparing it with similar activities in other EU member states.

Keywords: regulation, healthcare system, personal dana protection, quality data assurance

Procedia PDF Downloads 44
25713 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing

Procedia PDF Downloads 273
25712 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 72
25711 Stepping in Sustainability: Walkability an Upcoming Design Parameter for Transit Based Communities in Lahore, Pakistan

Authors: Sadaf Saeed

Abstract:

The consideration of walkability as an urban design parameter in conjunction with transit-oriented development is an established trend in the developed countries but an upcoming trend in developing countries. In Pakistan, the first Bus Rapid Transit (locally called as Metro Bus) has been introduced in the city of Lahore in 2013 where around 40 percent of the riders access to transit stations by walking. To what extent the aspect of walkability has been considered in the local scenario? To address this question, this paper presents an account of urban design parameters regarding pedestrian provisions and quality of walking environment between Metro Bus stations and users’ destination in the transit neighbourhoods (areas up to 500-meter radius). The primary and secondary data for objective and subjective walkability measurements has been used for neighbourhoods of five selected transit stations ranked against the predefined critical assessed factors (CAF). The multi-criteria approach including visual and geospatially-based parameters at street level, along with walkability index score at selected sites linked with CAF evaluation were the selected methods for this study. The acceptability of walkability as an urban design parameter for transit planning in terms of connectivity and social implications of the concept has also been analysed in the local context. The paper highlights that the aspect of walkability in Lahore is being derelict owing to the focus of government on other initiatives such as park and ride and feeder bus services for mobility of passengers. However, the pedestrian-friendly design parameters as a part of future transit planning can enhance social, liveable and interactive walking environment within transit neighbourhoods.

Keywords: walkability, sustainability, transit neighborhoods, social communities

Procedia PDF Downloads 247
25710 Monitoring of Serological Test of Blood Serum in Indicator Groups of the Population of Central Kazakhstan

Authors: Praskovya Britskaya, Fatima Shaizadina, Alua Omarova, Nessipkul Alysheva

Abstract:

Planned preventive vaccination, which is carried out in the Republic of Kazakhstan, promoted permanent decrease in the incidence of measles and viral hepatitis B. In the structure of VHB patients prevail people of young, working age. Monitoring of infectious incidence, monitoring of coverage of immunization of the population, random serological control over the immunity enable well-timed identification of distribution of the activator, effectiveness of the taken measures and forecasting. The serological blood analysis was conducted in indicator groups of the population of Central Kazakhstan for the purpose of identification of antibody titre for vaccine preventable infections (measles, viral hepatitis B). Measles antibodies were defined by method of enzyme-linked assay (ELA) with test-systems "VektoKor" – Ig G ('Vektor-Best' JSC). Antibodies for HBs-antigen of hepatitis B virus in blood serum was identified by method of enzyme-linked assay (ELA) with VektoHBsAg test systems – antibodies ('Vektor-Best' JSC). The result of the analysis is positive, the concentration of IgG to measles virus in the studied sample is equal to 0.18 IU/ml or more. Protective level of concentration of anti-HBsAg makes 10 mIU/ml. The results of the study of postvaccinal measles immunity showed that the share of seropositive people made 87.7% of total number of surveyed. The level of postvaccinal immunity to measles in age groups differs. So, among people older than 56 the percentage of seropositive made 95.2%. Among people aged 15-25 were registered 87.0% seropositive, at the age of 36-45 – 86.6%. In age groups of 25-35 and 36-45 the share of seropositive people was approximately at the same level – 88.5% and 88.8% respectively. The share of people seronegative to a measles virus made 12.3%. The biggest share of seronegative people was found among people aged 36-45 – 13.4% and 15-25 – 13.0%. The analysis of results of the examined people for the existence of postvaccinal immunity to viral hepatitis B showed that from all surveyed only 33.5% have the protective level of concentration of anti-HBsAg of 10 mIU/ml and more. The biggest share of people protected from VHB virus is observed in the age group of 36-45 and makes 60%. In the indicator group – above 56 – seropositive people made 4.8%. The high percentage of seronegative people has been observed in all studied age groups from 40.0% to 95.2%. The group of people which is least protected from getting VHB is people above 56 (95.2%). The probability to get VHB is also high among young people aged 25-35, the percentage of seronegative people made 80%. Thus, the results of the conducted research testify to the need for carrying out serological monitoring of postvaccinal immunity for the purpose of operational assessment of the epidemiological situation, early identification of its changes and prediction of the approaching danger.

Keywords: antibodies, blood serum, immunity, immunoglobulin

Procedia PDF Downloads 260
25709 Data Analytics in Hospitality Industry

Authors: Tammy Wee, Detlev Remy, Arif Perdana

Abstract:

In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.

Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing

Procedia PDF Downloads 183
25708 Realization of a (GIS) for Drilling (DWS) through the Adrar Region

Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz

Abstract:

Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.

Keywords: GIS, DWS, drilling, Adrar

Procedia PDF Downloads 311
25707 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry

Procedia PDF Downloads 415
25706 Corporate Social Responsibility and Its Impact on Corporate Governance: Comparative Study between Listed Companies on Bucharest and Bombay Stock Exchange

Authors: L. Feleagă, M. Dumitrașcu, N. Feleagă

Abstract:

This article is a research on corporate governance. The aim of the study is to focus a special attention on the importance of corporate social responsibility and corporate governance, which are relevant, indeed necessary, for organizations. In this regard, we analyzed the corporate social responsibility in the context of corporate governance for companies listed on Bucharest and Bombay Stock Exchange. Therefore, we bring into the spotlight some differences between India and Romania linked with the importance ascribed to corporate social responsibility of a company. We presented the results of the demarche and we concluded suggestions regarding further research in this area. The study increases the awareness, identifies and articulates desirable behaviors, which are not intended to be exhaustive.

Keywords: corporate governance, corporate social responsibility, disclosure, listed companies

Procedia PDF Downloads 315
25705 Challenges to Ensure Food Safety through Sanitation and Hygiene Coverage in Bangladesh

Authors: Moshiur Rahman, Tahmida Jakia

Abstract:

Bangladesh, a densely populated South Asian country is home to more than 160 million people. In two decades ago, the people of this developing nation drank heavily contaminated surface water. Over the past thirty years, the country, and its development partners, has undertaken extensive efforts to provide microbiologically safe groundwater based drinking water through the use of tube-wells. About 85% of the people now drink tube-well water from about 11 million tube-wells/hand pumps. However, diarrhoeal and other water-related diseases are still reported among the major causes of morbidity and mortality among Bangladeshi children. This implies that the mode of transmission of pathogens through water and/or other modes continue. In addition, massive scale arsenic contamination has been recently reported in the ground water. Thirty five million people may be at risk of consuming arsenic contaminated water exceeding 0.05 mg/l in Bangladesh. Drinking of arsenic contaminated water has been linked with skin problems, cancer, cardiovascular diseases, neurological diseases, eye problems, cancer of the internal organs, and other diseases. In the study area, Narail district, recent investigations about existing water quality situations indicated presence of low to high levels of arsenic, salinity, iron, manganese and bacteriological contamination risks. As challenges for safe water exist; it is likely that sanitation and food hygiene practices are poor which lead threat to ensure food security.The main attempt of this study is to find out the challenges to ensure food security andprovide probable solutions to ensure food safety towards 0.7 million of people in study area. A survey has been conducted at Lohagara and Kalia sub district of Narail district with a pretested questionnaire. Primary data are collected through a questionnaire, while secondary data are collected from pertinent offices as well as academic journals. FGD has also been done to know the knowledge regarding water, sanitation as well as food preparation and consumption practice of community people in study area. The major focus of this study is to assess the state of sanitation and food hygiene condition of rural people. It is found that most of the villagers have lack of knowledge about food safety. Open defecation rate is high which lead threat to ensure food security.

Keywords: food safety, challenges, hygiene, Bangladesh

Procedia PDF Downloads 337
25704 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 576
25703 Measured versus Default Interstate Traffic Data in New Mexico, USA

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.

Keywords: AASHTOWare, traffic, weigh-in-motion, axle load distribution

Procedia PDF Downloads 345
25702 Isogeometric Topology Optimization in Cracked Structures Design

Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin

Abstract:

In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.

Keywords: topology optimization, isogeometric, NURBS, design

Procedia PDF Downloads 495
25701 Design of Knowledge Management System with Geographic Information System

Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan

Abstract:

Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.

Keywords: 5C4C, data, information, knowledge

Procedia PDF Downloads 467
25700 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 326
25699 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 187