Search results for: in-situ chemical oxidation
4478 A Combinatorial Approach of Treatment for Landfill Leachate
Authors: Anusha Atmakuri, R. D. Tyagi, Patrick Drogui
Abstract:
Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate.Keywords: landfill leachate, extracellular polymeric substances, electrocoagulation, bioflocculant.
Procedia PDF Downloads 864477 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions
Authors: Oustani Mabrouka, Halilat Med Tahar
Abstract:
The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw
Procedia PDF Downloads 2364476 Chemical Composition of the Essential Oil of Citrus aurantium Isolated by Solvent Free Microwave Assisted Extraction and Hydrodistillation Extraction
Authors: Masume Rezaie, Mohammad H. Farjam
Abstract:
Chemical composition of Citrus aurantium was studied by solvent free microwave extraction (SFME) and hydrodistillation (HD) methods. Limonene (76.06% SFME and 67.04% HD), Linalool (4.91% SFME and 10.08% HD) and Linalyl Acetate (8.52% SFME and 5.10% HD) were the major compounds that obtained by SFME and hydrodistillation, respectively.Keywords: microwave-assisted, GC-MS, essential oils, hydrodistillation, citrus aurantium
Procedia PDF Downloads 3544475 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation
Authors: Medhanie Gebremedhin Gebru, Alex Schechter
Abstract:
Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation
Procedia PDF Downloads 1454474 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings
Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz
Abstract:
Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.Keywords: biomaterials, PEO, corrosion resistance, magnesium
Procedia PDF Downloads 1044473 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia
Authors: Yihunie Hibstie Asres, Manny Mathuthu
Abstract:
Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.Keywords: NAA, Yebrage, Chemoga, macro/micronutrient
Procedia PDF Downloads 1754472 Study of Chemical Compounds of Garlic
Authors: Bazaraliyeva Aigerim Bakytzhanovna, Turgumbayeva Aknur Amanbekovna
Abstract:
The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.Keywords: allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method
Procedia PDF Downloads 804471 Spinochromes: Kairomones Involved in the Symbiosis between the Shrimp Tuleariocaris holthuisi and Echinometra mathaei
Authors: Lola Brasseur, Guillaume Caulier, Marie Demeyer, Pascal Gerbaux, Igor Eeckhaut
Abstract:
Seawater being an ideal dispersing agent, chemical communication stays predominant in marine ecosystems. However, if many molecules acting in chemical heterospecific communication have already been well described in terrestrial ecosystems, only three of these molecules were identified in marine ecosystems. Echinoderms and their symbiotic organisms constitute very good models to study heterospecific chemical communication because each class synthesizes a specific type of molecules and symbioses with echinoderms as hosts are very usual. In this study, the chemical communication that allows the commensal shrimps Tuleariocaris holthuisi Hipeau-Jacquotte, 1965 to live with their host Echinometra mathaei (Blainville, 1825) was investigated. The chemoreception of the shrimp was characterized using olfactometers and it was demonstrated that hosts and synthetic hydroxynaphthoquinones are attractive to the symbiotic shrimps. Hydroxynaphthoquinonic pigments also known as spinochromes are by the way synthesized by sea urchin and involved in all probability in a lot of mechanisms. To our knowledge, this study is the first highlighting the ecological function of naphthoquinones as kairomones. Chemical extractions were also performed on sea urchins in order to analyze and identify their specific hydroxynaphthoquinones using HPLC-ESI-MS. Accurate mass identification and elemental composition have been performed on various organs (gonads, coelomic liquid, digestive system and test) in different morphotypes of Echinometra mathaei for a better understanding of the molecular diversity of these semiochemicals. Moreover, some experiments were performed to investigate the dependence of T. holthuisi for their host. First, the analyses showed that the molecules involved in shrimp pigmentation are the same that the ones involved in E. mathaei, suggesting a potential feeding on the host. Secondly, a substantial shrimp depigmentation and an increase of the mortality rate were demonstrated after the symbionts-host separation which could mean a potential implication of spinochromes in the shrimp metabolism.Keywords: crustacean, sea urchin, spinochrome, symbiosis
Procedia PDF Downloads 1914470 Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers
Authors: Y. Jeon, A. Bissessur, J. Lin, P. Ndungu
Abstract:
Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique.Keywords: alpha cellulose, bio-bleaching, degree of polymerization, Kraft-cellulose insulating paper, transformer, viscosity
Procedia PDF Downloads 2704469 The Transport of Radical Species to Single and Double Strand Breaks in the Liver’s DNA Molecule by a Hybrid Method of Type Monte Carlo - Diffusion Equation
Abstract:
The therapeutic utility of certain Auger emitters such as iodine-125 depends on their position within the cell nucleus . Or diagnostically, and to maintain as low as possible cell damage, it is preferable to have radionuclide localized outside the cell or at least the core. One solution to this problem is to consider markers capable of conveying anticancer drugs to the tumor site regardless of their location within the human body. The objective of this study is to simulate the impact of a complex such as bleomycin on single and double strand breaks in the DNA molecule. Indeed, this simulation consists of the following transactions: - Construction of BLM -Fe- DNA complex. - Simulation of the electron’s transport from the metastable state excitation of Fe 57 by the Monte Carlo method. - Treatment of chemical reactions in the considered environment by the diffusion equation. For physical, physico-chemical and finally chemical steps, the geometry of the complex is considered as a sphere of 50 nm centered on the binding site , and the mathematical method used is called step by step based on Monte Carlo codes.Keywords: concentration, yield, radical species, bleomycin, excitation, DNA
Procedia PDF Downloads 4574468 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage
Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse
Abstract:
Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storageKeywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp
Procedia PDF Downloads 2144467 RBS Characteristic of Cd1−xZnxS Thin Film Fabricated by Vacuum Deposition Method
Authors: N. Dahbi, D. E. Arafah
Abstract:
Cd1−xZnxS thins films have been fabricated from ZnS/CdS/ZnS multilayer thin film systems, by using the vacuum deposition method; the Rutherford back-scattering (RBS) technique have been applied in order to determine the: structure, composition, depth profile, and stoichiometric of these films. The influence of the chemical and heat treatments on the produced films also have been investigated; the RBS spectra of the films showed that homogenous Cd1−xZnxS can be synthesized with x=0.45.Keywords: Cd1−xZnxS, chemical treatment, depth profile, heat treatment, RBS, RUMP simulation, thin film, vacuum deposition, ZnS/CdS/ZnS
Procedia PDF Downloads 2214466 Chemical Constituents and Biological Evaluation of Leaves Essential Oils of Vitex agnus-castus L. Growing in the Southern-West Algeria
Authors: Abdallah Habbab, Khaled Sekkoum, Nasser Belboukhari
Abstract:
Objective: This study is designed to examine the chemical composition, antioxidant and antibacterial activities of the essential oil extracted from leaves of Vitex agnus-castus. Methods: The essential oils of dry leaves of Vitex agnus-castus L. were obtained by hydro-distillation, afforded oil in the yield of 5.5% and their volatile constituents were identified by GC/MS. Antioxidant activity of the sample was determined by test system DPPH. Antifungal activity was tested against three fungal strains (Aspergillus flavus, Penicillium escpansum and Aspergillus ochraceus) by direct contact method. Results: Forty-three compounds were identified, representing 98.02% of the oil. Major components of the oil were 1,8-cineole (18.27 %), caryophyllene (8.60 %), N-(M-fluorophenyl)-maleimide (6.30 %), (+)-epi-bicyclosesquiphellandrene (6.00 %), terpinen-4-ol (5.57 %), pyrrolo (3,2,1-jk) carbazole (5.43 %), caryophyllene oxide (4.79 %), and phenol (4.09 %). Conclusion: The chemical constituents in the essential oil from the locally grown Vitex agnus-castus were identified. Therefore, the essential oil of Vitex agnus-castus is an active candidate which would be used as antioxidant, or antifungal agent in new drugs preparation for therapy of diseases.Keywords: Vitex agnus-castus, essential oil, GC/MS, DPPH, 1, 8-cineole
Procedia PDF Downloads 4634465 Hypolipidemic and Antioxidant Effects of Mycelial Polysaccharides from Calocybe indica in Hyperlipidemic Rats Induced by High-Fat Diet
Authors: Govindan Sudha, Mathumitha Subramaniam, Alamelu Govindasamy, Sasikala Gunasekaran
Abstract:
The aim of this study was to investigate the protective effect of Hypsizygus ulmarius polysaccharides (HUP) on reducing oxidative stress, cognitive impairment and neurotoxicity in D-galactose induced aging mice. Mice were subcutaneously injected with D-galactose (150 mg/kg per day) for 6 weeks and were administered HUP simultaneously. Aged mice receiving vitamin E (100 mg/kg) served as positive control. Chronic administration of D-galactose significantly impaired cognitive performance oxidative defence and mitochondrial enzymes activities as compared to control group. The results showed that HUP (200 and 400 mg/kg) treatment significantly improved the learning and memory ability in Morris water maze test. Biochemical examination revealed that HUP significantly increased the decreased activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), mitochondrial enzymes-NADH dehydrogenase, malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), Na+K+, Ca2+, Mg2+ATPase activities, elevated the lowered total anti-oxidation capability (TAOC), glutathione (GSH), vitamin C and decreased the raised acetylcholinesterase (AChE) activities, malondialdehyde (MDA), hydroperoxide (HPO), protein carbonyls (PCO), advanced oxidation protein products (AOPP) levels in brain of aging mice induced by D-gal in a dose-dependent manner. In conclusion, present study highlights the potential role of HUP against D-galactose induced cognitive impairment, biochemical and mitochondrial dysfunction in mice. In vitro studies on the effect of HUP on scavenging DPPH, ABTS, DMPD, OH radicals, reducing power, B-carotene bleaching and lipid peroxidation inhibition confirmed the free radical scavenging and antioxidant activity of HUP. The results suggest that HUP possesses anti-aging efficacy and may have potential in treatment of neurodegenerative diseases.Keywords: aging, antioxidants, mushroom, neurotoxicity
Procedia PDF Downloads 5304464 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite
Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed
Abstract:
Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites
Procedia PDF Downloads 4054463 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits
Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov
Abstract:
A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.Keywords: aronia, chemical composition, fruits, quality
Procedia PDF Downloads 2044462 Soot Formation in the Field of Combustion
Authors: Nacira Mecheri, N. Boussid
Abstract:
A new chemical mechanism designed to study the process of forming the first aromatic ring (benzene) and polycyclic aromatic hydrocarbons (PAH) from a flame of acetylene (C2H2) has been developed. The mechanism developed, contains 50 chemical species involved in 268 reversible elementary reactions. The comparison between the results from modelling and experimental measurements allowed us to test the validity of the postulated mechanism in specific experimental conditions. Kinetic analysis of the flame by calculating the maximum rates for each elementary reaction, allowed us to identify key reactions pathways of consumption and formation of main precursors of soot.Keywords: benzene, PAH, acetylene, modeling, flame, soot
Procedia PDF Downloads 3364461 Analytical Method Development and Validation of Stability Indicating Rp - Hplc Method for Detrmination of Atorvastatin and Methylcobalamine
Authors: Alkaben Patel
Abstract:
The proposed RP-HPLC method is easy, rapid, economical, precise and accurate stability indicating RP-HPLC method for simultaneous estimation of Astorvastatin and Methylcobalamine in their combined dosage form has been developed.The separation was achieved by LC-20 AT C18(250mm*4.6mm*2.6mm)Colum and water (pH 3.5): methanol 70:30 as mobile phase, at a flow rate of 1ml/min. wavelength of this dosage form is 215nm.The drug is related to stress condition of hydrolysis, oxidation, photolysis and thermal degradation.Keywords: RP- HPLC, atorvastatin, methylcobalamine, method, development, validation
Procedia PDF Downloads 3364460 Wastewater Treatment by Modified Bentonite
Authors: Mecabih Zohra
Abstract:
Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.Keywords: adsorption, bentonite, COD, wastewater
Procedia PDF Downloads 854459 Wastewater Treatment by Modified Bentonite
Authors: Mecabih Zohra
Abstract:
Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.Keywords: adsorption, bentonite, COD, wastewater
Procedia PDF Downloads 834458 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production
Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan
Abstract:
Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.Keywords: earth abundant, electrocatalytic, hydrogen, manganese
Procedia PDF Downloads 1734457 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin
Abstract:
Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility
Procedia PDF Downloads 3824456 Effects of Chemicals in Elderly
Authors: Ali Kuzu
Abstract:
There are about 800 thousand chemicals in our environment and the number is increasing more than a thousand every year. While most of these chemicals are used as components in various consumer products, some are faced as industrial waste in the environment. Unfortunately, many of these chemicals are hazardous and affect humans. According to the “International Program on Chemical Safety” of World Health Organization; Among the chronic health effects of chemicals, cancer is of major concern. Many substances have found in recent years to be carcinogenic in one or more species of laboratory animals. Especially with respect to long-term effects, the response to a chemical may vary, quantitatively or qualitatively, in different groups of individuals depending on predisposing conditions, such as nutritional status, disease status, current infection, climatic extremes, and genetic features, sex and age of the individuals. Understanding the response of such specific risk groups is an important area of toxicology research. People with age 65+ is defined as “aged (or elderly)”. The elderly population in the world is about 600 million, which corresponds to ~8 percent of the world population. While every 1 of each 4 people is aged in Japan, the elderly population is quite close to 20 percent in many developed countries. And elderly population in these countries is growing more rapidly than the total population. The negative effects of chemicals on elderly take an important place in health-care related issues in last decades. The aged population is more susceptible to the harmful effects of environmental chemicals. According to the poor health of the organ systems in elderly, the ability of their body to eliminate the harmful effects and chemical substances from their body is also poor. With the increasing life expectancy, more and more people will face problems associated with chemical residues.Keywords: elderly, chemicals’ effects, aged care, care need
Procedia PDF Downloads 4564455 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition
Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang
Abstract:
The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate
Procedia PDF Downloads 4394454 Automation of Kitchen Chemical in the Textile Industry
Authors: José Luiz da Silva Neto, Renato Sipelli Silva, Érick Aragão Ribeiro
Abstract:
The automation of industrial processes plays a vital role in industries today, becoming an integral and important part of the industrial process and modern production. The process control systems are designed to maximize production, reduce costs and minimize risks in production. However, these systems are generally not deployed methodologies and planning. So that this article describes the development of an automation system of a kitchen preparation of chemicals in the textile industry based on a retrofitting methodology that provides more quality into the process at a lower cost.Keywords: automation, textile industry, kitchen chemical, information integration
Procedia PDF Downloads 4274453 Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites
Authors: Tigist Girma Kidane, Yalew Dessalegn Asfaw
Abstract:
Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties.Keywords: age, bamboo species, flexural properties, harvesting season, polypropylene
Procedia PDF Downloads 524452 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods
Procedia PDF Downloads 1894451 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria
Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo
Abstract:
The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water
Procedia PDF Downloads 2654450 Control of the Pest Bemisia tabaci With the Entomopathogenic Fungus Beauveria bassiana in a Geothermal Greenhouse in Southern Tunisia
Authors: Besma Hamrouni Assadi, Mohamed Sadok Belkadhi
Abstract:
The whitefly Bemisia tabaci is a cosmopolitan insect that causes serious damage to greenhouse crops. It is increasingly recognized that the use of biological control means such as entomopathogenic fungi presents a sustainable solution to integrated pest management programs. In order to reduce the use of chemical pesticides, Beauveria bassiana strain R444 was tested against eggs and second, third and fourth instar larvae of B. tabaci in a geothermal tomato greenhouse in southern Tunisia. This entomopathogenic fungus was compared to a chemical pesticide Imidacloprid and an untreated control. We found significant mortality of individuals caused by B. bassiana comparable to that caused by the chemical pesticide. After four weeks of follow-up, this fungus causes a mortality of eggs and larvae of B. tabaci that exceeds 60%. It shows that the use of entomopathogenic fungi can help reduce the use of pesticides to control B. tabaci on geothermal crops.Keywords: entomopathogenic fungi, Bemisia tabaci, geothermal greenhouse, integrated pest management programs
Procedia PDF Downloads 1054449 Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian
Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili
Abstract:
The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations.Keywords: chemistry, metallic trace elements, sediment, water
Procedia PDF Downloads 289