Search results for: feature generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4874

Search results for: feature generation

4214 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 310
4213 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 181
4212 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 307
4211 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
4210 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
4209 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: smart grids, wind turbine, modeling, renewable energy, robust control

Procedia PDF Downloads 232
4208 The Inception: A University-Wide Research on Alcohol Consumption

Authors: Robi Lou Logarta, Meliz Ann Marilag, Kristyl Lee Nisnisan, Felipe Lula Jr.

Abstract:

Nowadays, alcohol is consumed widely around the globe for plenty of reasons. College years are the time that the students really decide if whether they will or will not engage into alcohol, although alcohol drinking begins before students arrive at college. The reasons on why college students consume alcohol vary in many categories. The norms on alcohol drinking are addiction, emotional pain reliever, popularity purposes, socialization, and a medium of euphoria for most students; college students in particular are most likely to feel this need. After tons of requirements to be complied and courses to be reviewed, they felt a need for celebration and relaxation which ends up in drinking with college mates and a few old friends. A lot of reasons consist the consumption of alcohol and this research determined the reasons behind the students’ onset for alcohol consumption; the main reason for such action and the experiences they encountered after in-take, furthermore, the correlation of alcohol drinking to the average allowance of the involved participants; Mindanao State University-Iligan Institute of Technology Students whether it affects their spending towards alcohol or not. This study assumes that alcohol drinking for MSU-IIT students’ is done to relieve emotional pain caused by flunking in particular subjects as well as dealing with romance, as part of the student body, these acts are noticeable enough which made this hypothesis be formulated. Selected MSU-IIT students were asked about their opinions regarding reasons of alcohol consumption. There were 100 respondents consisting of first year to fifth-year students aging 17-23 years old. Choices were given to the students to mark their most favorable reason for drinking that is adult influence, curiosity, family/personal problems, peer pressure, stress. Using the bar and pie chart illustrations, the collected data was then analyzed and among the given choices, the result has invalidated the hypothesis. The outcome shows that curiosity is the topmost reason why students start to drink and not due to emotional pain. With this, another hypothesis is formulated stating that millennial is a curious generation; this generation has changed the norm of drinking. One of the characteristics of the Y generation is being adventurous which correlates to how they get curious about things and the same goes for alcohol consumption, compared to the latter, this generation can be considered early drinkers in this manner. Therefore, it is concluded that MSU-IIT students which are part of the generation Y are adventurous enough to try unfamiliar beverages to satisfy their curious minds.

Keywords: adult influence, curiosity, family/personal problems, peer pressure, stress

Procedia PDF Downloads 261
4207 Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement

Authors: Subhro Sarkar, Umesh Mishra

Abstract:

Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower.

Keywords: MSW, waste generation, solid waste disposal, management

Procedia PDF Downloads 317
4206 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network

Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer

Abstract:

The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).

Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine

Procedia PDF Downloads 407
4205 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 473
4204 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
4203 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 134
4202 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.

Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities

Procedia PDF Downloads 156
4201 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 503
4200 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui

Abstract:

Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.

Keywords: hybrid power system, lower Sindh, power generation, solar and wind energy potential

Procedia PDF Downloads 252
4199 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 206
4198 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 202
4197 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road

Authors: Surachai Ampawasuvan, Supornchai Utainarumol

Abstract:

Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.

Keywords: peak rate, trips generation, fuel station, arterial road

Procedia PDF Downloads 408
4196 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
4195 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation

Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi

Abstract:

The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.

Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle

Procedia PDF Downloads 281
4194 Ghost Frequency Noise Reduction through Displacement Deviation Analysis

Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran

Abstract:

Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.

Keywords: displacement deviation analysis, gear whine, ghost frequency, sound quality

Procedia PDF Downloads 146
4193 Viability Study of the Use of Solar Energy for Water Heating in Homes in Brazil

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The sun is an inexhaustible source and harnessing its potential both for heating and for power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on the planet, only indirectly, as it is responsible for virtually all other energy sources, such as: Generates the evaporation source of the water cycle, which allows the impoundment and the consequent generation of electricity (hydroelectricity); Winds are caused by large-scale atmospheric induction caused by solar radiation; Oil, coal and natural gas were generated from waste plants and animals that originally obtained the energy needed for its development of solar radiation. Thus, the idea of using solar energy for practical purposes for the benefit of man is not new, as it accompanies the story since the beginning of time, which means that the sun was always of utmost importance in the design of shelters, or homes is, constructed by taking into consideration the use of sunlight, practicing what was being lost through the centuries, until a time when the buildings started to be designed completely independent of the sun. However, the climatic rigors still needed to be fought, only artificially and today seen as unsustainable, with additional facilities fueled by energy consumption. This paper presents a study on the feasibility of using solar energy for heating water in homes, developing a simplified methodology covering the mode of operation of solar water heaters, solar potential existing alternative systems of Brazil, the international market, and barriers encountered.

Keywords: solar energy, solar heating, solar project, water heating

Procedia PDF Downloads 332
4192 The Knowledge, Attitude, and Practice About Health Information Technology Among First-Generation Muslim Immigrant Women in Atlanta City During the Pandemic

Authors: Awatef Ahmed Ben Ramadan, Aqsa Arshad

Abstract:

Background: There is a huge Muslim migration movement to North America and Europe for several reasons, primarily refuge from war areas and partly to search for better work and educational chances. There are always concerns regarding first-Generation Immigrant women's health and computer literacy, an adequate understanding of the health systems, and the use of the existing healthcare technology and services effectively and efficiently. Language proficiency level, preference for cultural and traditional remedies, socioeconomic factors, fear of stereotyping, limited accessibility to health services, and general unfamiliarity with the existing health services and resources are familiar variables among these women. Aims: The current study aims to assess the health and digital literacy of first-generation Muslim women in Atlanta city. Also, the study aims to examine how the COVID-19 pandemic has encouraged the use of health information technology and increased technology awareness among the targeted women. Methods: The study design is cross-sectional correlational research. The study will be conducted to produce preliminary results that the investigators want to have to supplement an NIH grant application about leveraging information technology to reduce the health inequalities amongst the first-generation immigrant Muslim women in Atlanta City. The investigators will collect the study data in two phases using different tools. Phase one was conducted in June 2022; the investigators used tools to measure health and digital literacy amongst 42 first-generation immigrant Muslim women. Phase two was conducted in November 2022; the investigators measured the Knowledge, Attitude, and Practice (KAP) of using health information technology such as telehealth from a sample of 45 first-generation Muslim immigrant women in Atlanta; in addition, the investigators measured how the current pandemic has affected their KAP to use telemedicine and telehealth services. Both phases' study participants were recruited using convenience sampling methodology. The investigators collected around 40 of 18 years old or older first-generation Muslim immigrant women for both study phases. The study excluded Immigrants who hold work visas and second-generation immigrants. Results: At the point of submitting this abstract, the investigators are still analyzing the study data to produce preliminary results to apply for an NIH grant entitled "Leveraging Health Information Technology (Health IT) to Address and Reduce Health Care Disparities (R01 Clinical Trial Optional)". This research will be the first step of a comprehensive research project to assess and measure health and digital literacy amongst a vulnerable community group. The targeted group might have different points of view from the U.S.-born inhabitants on how to: promote their health, gain healthy lifestyles and habits, screen for diseases, adhere to health treatment and follow-up plans, perceive the importance of using available and affordable technology to communicate with their providers and improve their health, and help in making serious decisions for their health. The investigators aim to develop an educational and instructional health mobile application considering the language and cultural factors that affect immigrants' ability to access different health and social support sources, know their health rights and obligations in their communities, and improve their health behavior and behavior lifestyles.

Keywords: first-generation immigrant Muslim women, telehealth, COVID-19 pandemic, health information technology, health and digital literacy

Procedia PDF Downloads 86
4191 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
4190 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode

Procedia PDF Downloads 301
4189 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 445
4188 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
4187 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir

Abstract:

Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.

Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh

Procedia PDF Downloads 235
4186 Born in Limbo, Living in Limbo and Probably Will Die in Limbo

Authors: Betty Chiyangwa

Abstract:

The subject of second-generation migrant youth is under-researched in the context of South Africa. Thus, their opinions and views have been marginalised in social science research. This paper addresses this gap by exploring the complexities of second-generation Mozambican migrant youth’s lived experiences in how they construct their identities and develop a sense of belonging in post-apartheid South Africa, specifically in Bushbuckridge. Bushbuckridge was among the earliest districts to accommodate Mozambican refugees to South Africa in the 1970s and remains associated with large numbers of Mozambicans. Drawing on Crenshaw’s (1989) intersectionality approach, the study contributes to knowledge on South-to-South migration by demonstrating how this approach is operationalised to understand the complex lived experiences of a disadvantaged group in life and possibly in death. In conceptualising the notion of identity among second-generation migrant youth, this paper explores the history and present of first and second-generation Mozambican migrants in South Africa to reveal how being born to migrant parents and raised in a hosting country poses life-long complications in one’s identity and sense of belonging. In the quest to form their identities and construct a sense of belonging, migrant youth employ precariously means to navigate the terrane. This is a case study informed by semi-structured interviews and narrative data gathered from 22 second-generation Mozambican migrant youth between 18 and 34 years who were born to at least one Mozambican parent living in Bushbuckridge and raised in South Africa. Views of two key informants from the South African Department of Home Affairs and the local tribal authority provided additional perspectives on second-generation migrant youth’s lived experiences in Bushbuckridge, which were explored thematically and narratively through Braun and Clarke’s (2012) six-step framework for analysing qualitative data. In exploring the interdependency and interconnectedness of social categories and social systems in Bushbuckridge, the findings revealed that participants’ experiences of identity formation and development of a sense of belonging were marginalised in complex, intersectional and precarious ways where they constantly (re)negotiated their daily experiences, which were largely shaped by their paradoxical migrant status in a host country. This study found that, in the quest for belonging, migrant youths were not a perfectly integrated category but evolved from almost daily lived experiences of creating a living that gave them an identity and a sense of belonging in South Africa. The majority of them shared feelings of living in limbo since childhood and fear of possibly dying in limbo with no clear (solid) sense of belonging to either South Africa or Mozambique. This study concludes that there is a strong association between feelings of identity, sense of belonging and levels of social integration. It recommends the development and adoption of a multilayer comprehensive model for understanding second-generation migrant youth identity and belonging in South Africa which encourages a collaborative effort among individual migrant youth, their family members, neighbours, society, and regional and national institutional structures for migrants to enhance and harness their capabilities and improve their wellbeing in South Africa.

Keywords: bushbuckridge, limbo, mozambican migrants, second-generation

Procedia PDF Downloads 70
4185 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.

Keywords: hybrid, marine current energy, tidal turbine, wave turbine

Procedia PDF Downloads 361