Search results for: erosion rate prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10411

Search results for: erosion rate prediction

9751 A Regression Model for Residual-State Creep Failure

Authors: Deepak Raj Bhat, Ryuichi Yatabe

Abstract:

In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.

Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils

Procedia PDF Downloads 410
9750 Investigation on Scattered Dose Rate and Exposure Parameters during Diagnostic Examination Done with an Overcouch X-Ray Tube in Nigerian Teaching Hospital

Authors: Gbenga Martins, Christopher J. Olowookere, Lateef Bamidele, Kehinde O. Olatunji

Abstract:

The aims of this research are to measure the scattered dose rate during an X-ray examination in an X-ray room, compare the scattered dose rate with exposure parameters based on the body region examined, and examine the X-ray examination done with an over couch tube. The research was carried out using Gamma Scout software installation on the computer system (Laptop) to record the radiation counts, pulse rate, and dose rate. The measurement was employed by placing the detector at 900 to the incident X-ray. Proforma was used for the collection of patients’ data such as age, sex, examination type, and initial diagnosis. Data such as focus skin distance (FSD), body mass index (BMI), body thickness of the patients, the beam output (kVp) were collected at Obafemi Awolowo University, Ile-Ife, Western Nigeria. Total number of 136 patients was considered during this research. Dose rate range between 14.21 and 86.78 µSv/h for the plain abdominal region, 85.70 and 2.86 µSv/h for the lumbosacral region,1.3 µSv/yr and 3.6 µSv/yr in the pelvis region, 2.71 µSv/yr and 28.88 µSv/yr for leg region, 3.06 µSv/yr and 29.98 µSv/yr in hand region. The results of this study were compared with those of other studies carried out in other countries. The findings of this study indicated that the number of exposure parameters selected for each diagnostic examination contributed to the dose rate recorded. Therefore, these results call for a quality assurance program (QAP) in diagnostic X-ray units in Nigerian hospitals.

Keywords: X-radiation, exposure parameters, dose rate, pulse rate, number of counts, tube current, tube potential, diagnostic examination, scattered radiation

Procedia PDF Downloads 117
9749 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 484
9748 Effect of Depressurization Rate in Batch Foaming of Porous Microcellular Polycarbonate on Microstructure Development

Authors: Indrajeet Singh, Abhishek Gandhi, Smita Mohanty, S. K. Nayak

Abstract:

In this article, a focused study has been performed to comprehend the influence of change in depressurization rate on microcellular polycarbonate foamed morphological attributes. The depressurization rate considered in this study were 0.5, 0.05, 0.01 and 0.005 MPa/sec and the physical blowing agent utilized was carbon dioxide owing to its high solubility in polycarbonate at room temperature. The study was performed on two distinct saturation pressures, i.e., 3 MPa and 6 MPa to understand if saturation pressure has any effects on it. It is reported that with increase in depressurization rate, a higher amount of thermodynamic instability was induced which resulted in generation of larger number of smaller sized cells. This article puts forward an understanding of how depressurization rate control could be well exploited during the batch foaming process to develop high quality microcellular foamed products with exceedingly well controlled cell size.

Keywords: depressurization, porous polymer, foaming, microcellular

Procedia PDF Downloads 258
9747 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence

Authors: Fitri CaturLestari

Abstract:

According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.

Keywords: demography, economic growth, gender, HDI

Procedia PDF Downloads 336
9746 Erosion Modeling of Surface Water Systems for Long Term Simulations

Authors: Devika Nair, Sean Bellairs, Ken Evans

Abstract:

Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.

Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems

Procedia PDF Downloads 86
9745 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 210
9744 The Potential Use of Crude Palm Oil Liquid Wastes to Improve Nutrient Levels in Vegetable Plants

Authors: Hasan Basri Jumin

Abstract:

Application of crude palm oil waste combined to suitable concentration of benzyl-adenine give the significant effect to mean relative growth rate of vegetable plants and the same pattern in net assimilation rate crude palm oil waste has also significantly increased during 28 days old plants. Combination of treatment of suitable concentration of crude palm oil and benzyl adenine increased the growth and production of vegetable plants. The relative growth rate of vegetable plants was rapid 3 weeks after planting and gradually decreased at the end of the harvest time period. Combination of 400 mg.l-1 CPO with 1.0 mgl-1 till 10mgl-1 BA increased the Mean Relative Growth Rate (MRGR), Net assimilation rate (NAR), Leaf area and dry weight of Brassica juncea, Brassica oleraceae and Lactuca sativa.

Keywords: benzyladenine, crude-palm-oil, nutrient, vegetable, waste

Procedia PDF Downloads 196
9743 Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes

Authors: Septimia Sarbu

Abstract:

The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes.

Keywords: generalized entropies, Sharma-Mittal entropy rate, Gaussian processes, eigenvalues of the covariance matrix, squeeze theorem

Procedia PDF Downloads 522
9742 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance

Authors: Shauma L. Tamba

Abstract:

This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.

Keywords: morality, competence, ingroup identification, religion, group norm

Procedia PDF Downloads 408
9741 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study

Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost

Abstract:

The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.

Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones

Procedia PDF Downloads 150
9740 Clinical Outcome after in Vitro Fertilization in Women Aged 40 Years and Above: Reasonable Cut-Off Age for Successful Pregnancy

Authors: Eun Jeong Yu, Inn Soo Kang, Tae Ki Yoon, Mi Kyoung Koong

Abstract:

Advanced female age is associated with higher cycle cancelation rates, lower clinical pregnancy rate, increased miscarriage and aneuploidy rates in IVF (In Vitro Fertilization) cycles. This retrospective cohort study was conducted at a Cha Fertility Center, Seoul Station. All fresh non-donor IVF cycles performed in women aged 40 years and above from January 2016 to December 2016 were reviewed. Donor/recipient treatment, PGD/PGS (Preimplantation Genetic Diagnosis/ Preimplantation Genetic Screening) were excluded from analysis. Of the 1,166 cycles from 753 women who completed ovulation induction, 1,047 were appropriate for the evaluation according to inclusion and exclusion criterion. IVF cycles were categorized according to age and grouped into the following 1-year age groups: 40, 41, 42, 43, 44, 45 and > 46. The mean age of patients was 42.4 ± 1.8 years. The median AMH (Anti-Mullerian Hormone) level was 1.2 ± 1.5 ng/mL. The mean number of retrieved oocytes was 4.9 ± 4.3. The clinical pregnancy rate and live birth rate in women > 40 years significantly decreased with each year of advancing age (p < 0.001). The clinical pregnancy rate decreased from 21% at the age of 40 years to 0% at ages above 45 years. Live birth rate decreased from 12.3% to 0%, respectively. There were no clinical pregnancy outcomes among 95 patients aged above 45 years of age. The overall miscarriage rate was 40.7% (range, 36.7%-70%). The transfer of at least one good quality embryo was associated with about 4-9% increased chance of a clinical pregnancy rate. Therefore, IVF in old age women less than 46 had a reasonable chance for successful pregnancy outcomes especially when good quality embryo is transferred.

Keywords: advanced maternal age, in vitro fertilization, pregnancy rate, live birth rate

Procedia PDF Downloads 145
9739 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 142
9738 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology

Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan

Abstract:

Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.

Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation

Procedia PDF Downloads 462
9737 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 259
9736 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 158
9735 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 465
9734 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 369
9733 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 103
9732 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 302
9731 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 291
9730 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen

Abstract:

The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume

Procedia PDF Downloads 251
9729 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 573
9728 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 183
9727 The Possibility of Using Somatosensory Evoked Potential(SSEP) as a Parameter for Cortical Vascular Dementia

Authors: Hyunsik Park

Abstract:

As the rate of cerebrovascular disease increases in old populations, the prevalence rate of vascular dementia would be expected. Therefore, authors designed this study to find out the possibility of somatosensory evoked potentials(SSEP) as a parameter for early diagnosis and prognosis prediction of vascular dementia in cortical vascular dementia patients. 21 patients who met the criteria for vascular dementia according to DSM-IV,ICD-10and NINDS-AIREN with the history of recent cognitive impairment, fluctuation progression, and neurologic deficit. We subdivided these patients into two groups; a mild dementia and a severe dementia groups by MMSE and CDR score; and analysed comparison between normal control group and patient control group who have been cerebrovascular attack(CVA) history without dementia by using N20 latency and amplitude of median nerve. In this study, mild dementia group showed significant differences on latency and amplitude with normal control group(p-value<0.05) except patient control group(p-value>0.05). Severe dementia group showed significant differences both normal control group and patient control group.(p-value<0.05, <001). Since no significant difference has founded between mild dementia group and patient control group, SSEP has limitation to use for early diagnosis test. However, the comparison between severe dementia group and others showed significant results which indicate SSEP can predict the prognosis of vascular dementia in cortical vascular dementia patients.

Keywords: SSEP, cortical vascular dementia, N20 latency, N20 amplitude

Procedia PDF Downloads 304
9726 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: antenna pattern, array, signal processing, spatial resolution

Procedia PDF Downloads 181
9725 Research on the Calculation Method of Smartization Rate of Concrete Structure Building Construction

Authors: Hongyu Ye, Hong Zhang, Minjie Sun, Hongfang Xu

Abstract:

In the context of China's promotion of smart construction and building industrialization, there is a need for evaluation standards for the development of building industrialization based on assembly-type construction. However, the evaluation of smart construction remains a challenge in the industry's development process. This paper addresses this issue by proposing a calculation and evaluation method for the smartization rate of concrete structure building construction. The study focuses on examining the factors of smart equipment application and their impact on costs throughout the process of smart construction design, production, transfer, and construction. Based on this analysis, the paper presents an evaluation method for the smartization rate based on components. Furthermore, it introduces calculation methods for assessing the smartization rate of buildings. The paper also suggests a rapid calculation method for determining the smartization rate using Building Information Modeling (BIM) and information expression technology. The proposed research provides a foundation for the swift calculation of the smartization rate based on BIM and information technology. Ultimately, it aims to promote the development of smart construction and the construction of high-quality buildings in China.

Keywords: building industrialization, high quality building, smart construction, smartization rate, component

Procedia PDF Downloads 72
9724 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields

Authors: John Knight, Fuchun Li, Yan Xu

Abstract:

Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.

Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function

Procedia PDF Downloads 369
9723 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 200
9722 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 262