Search results for: drug property prediction
4990 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor
Authors: Ejaz Ahmed, Huang Yong
Abstract:
The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.Keywords: CFD, combustion, gas turbine combustor, lean blowout
Procedia PDF Downloads 2674989 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz
Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto
Abstract:
Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.Keywords: characterization, dissolution, Efavirenz, solid dispersions
Procedia PDF Downloads 6314988 Synergistic and Antagonistic Interactions between Garlic Extracts and Metformin in Diabetes Treatment
Authors: Ikram Elsiddig, Yacouba Djamila, Amna Hamad
Abstract:
Abstract—The worldwide increasing of using herbs in form of medicine with or without prescription medications potentiates the interactions between herbal products and conventional medicines; due to more research for herb-drug interactions are needed. for a long time hyperglycemia had been treated with several medicinal plants. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol and high blood pressure. The purpose of this study is to determine the interaction effect between A. sativum bulb extracts and metformin drug used in diabetes treatment. The in vitro and in vivo evaluation were conducted by glucose reuptake using isolated rats hemidiaphgrams tissue and by estimate glucose tolerance in glucose-loaded wistar albino rats. The results showed that, petroleum ether, chloroform and ethyl acetate extracts were found to have activity of glucose uptake in isolated rats hemidiaphgrams of 24.11 mg/g, 19.07 mg/g and 15.66 mg/g compared to metformin drug of 17 mg/g. These activity were reducded to 17.8 mg/g, 13.59 mg/g and 14.46 mg/g after combination with metformin, metformin itself reduced to 13.59 mg/g, 14.46 mg/g and 12.71 mg/g in comination with chloroform and ethyl acetate. These decrease in activity could be due to herbal–drug interaction between the extracts of A. sativum bulb and metformin drug. The interaction between A. sativum extract and metformin was also shown by in vivo study on the induced hyperglycemic rats. The glucose level after administered of 200 mg/kg was found to be increase with 47.2 % and 17.7% at first and second hour compared to the increase of blood glucose in the control group of 82.6% and76.7%.. At fourth hour the glucose level was became less than normal with 3.4% compared to control which continue to increase with 68.2%. Dose of 400 mg/kg at first hour showed increase in blood glucose of 31.5 %, at second and fourth hours the glucose level was became less than normal with decrease of 3.2 % and 30.4%. After combination the activity was found to be less than that of extract at both high and low dose, whereas, at first and second hour, the glucose level was found to be increase with 50.4% and 21.2%, at fourth hour the glucose level was became less than normal with 14%. Therefore A. sativum could be a potential source for anti-diabetic when it used alone, and it is significant important to use the garlic extract alone instead of combined with Metformin drug in diabetes- treatment.Keywords: Antagonistic, Garlic, Metformin, Synergistic
Procedia PDF Downloads 1814987 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood
Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty
Abstract:
We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.Keywords: FT-NIR, mechanical properties, pre-processing, PLS
Procedia PDF Downloads 3614986 Detectability of Malfunction in Turboprop Engine
Authors: Tomas Vampola, Michael Valášek
Abstract:
On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine
Procedia PDF Downloads 944985 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.Keywords: tomato yield prediction, naive Bayes, redundancy, WSG
Procedia PDF Downloads 2364984 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4424983 Role of Natural Products in Drug Discovery of Anti-Biotic and Anti-Cancer Agents
Authors: Sunil Kumar
Abstract:
For many years, small organic molecules derived naturally from microbes and plants have delivered a number of expedient therapeutic drug agents. The search for naturally occurring lead compounds has continued in recent years as well, with the constituents of marine flora and fauna along with those of telluric microorganisms and plants being investigated for their anti-bacterial and anti-cancer activities. It has been observed that such promising lead molecules incline to promptly generate substantial attention among scientists like synthetic organic chemists and biologists. Subsequently, the availability of a given precious natural product sample may be enriched, and it may be possible to determine a preliminary idea of structure-activity relationships to develop synthetic analogues. For instance, anti-tumor drug topotecan is a synthetic chemical compound similar in chemical structure to camptothecin which is found in extracts of Camptotheca acuminate. Similarly, researchers at AstraZeneca discovered anti-biotic pyrrolamide through a fragment-based lead generation approach from kibdelomycin, which is isolated from Staphylococcus aureuss.Keywords: anticancer, antibiotic, lead molecule, natural product, synthetic analogues
Procedia PDF Downloads 1524982 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand
Authors: Phawichsak Prapassornpitaya, Wanida Jinsart
Abstract:
Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.Keywords: fine particulate matter, ARIMA, RMSE, Bangkok
Procedia PDF Downloads 2784981 Update on Genetic Diversity for Lamotrigine Induced Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
Authors: Natida Thongsima, Patompong Satapornpong
Abstract:
Introduction: Lamotrigine is widely used in the treatment of epilepsy and bipolar disorder. However, lamotrigine leads to adverse drug reactions (ADRs) consist of severe cutaneous adverse reactions (SCARs) include Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug rash with eosinophilia and systemic symptoms (DRESS). Moreover, lamotrigine-induced SCARs are usually manifested between 2 and 8 weeks after treatment initiation. According to a previous study, the association between HLA-B*15:02 and lamotrigine-induced cutaneous adverse drug reactions in the Thai population (odds ratio 4.89; 95% CI 1.28–18.66; p-value = 0.014) was found. Therefore, the distribution of pharmacogenetics markers a major role in predicting the culprit drugs for SCARs in many populations. Objective: In this study, we want to investigate the prevalence of HLA-B allele, which correlates with lamotrigine-induced SCARs in the healthy Thai population. Materials and Methods: We enrolled 350 healthy Thai individuals and were approved by the ethics committee of Rangsit University. HLA-B alleles were genotyped by the Lifecodes HLA SSO typing kits (Immucor, West Avenue, Stamford, USA). Results: The results presented HLA-B allele frequency in healthy Thai population were 14.71% (HLA-B*46:01), 8.57% (HLA-B*15:02), 6.71% (HLA-B*40:01), 5.86% (HLA-B*13:01), 5.71% (HLA-B*58:01), 5.14% (HLA-B*38:02), 4.86% (HLA-B*18:01), 4.86% (HLA-B*51:01), 3.86% (HLA-B*44:03) and 2.71% (HLA-B*07:05). Especially, HLA-B*15:02 allele was the high frequency in the Thais (8.57%), Han Chinese (7.30%), Vietnamese (13.50%), Malaysian (6.06%) and Indonesian (11.60%). Nevertheless, this allele was much lower in other populations, namely, Africans, Caucasians, and Japanese. Conclusions: Although the sample size of the healthy Thai population in this research was limited, there were found the frequency of the HLA-B*15:02 allele could predispose them toward to lamotrigine-induced SCARs in Thailand.Keywords: lamotrigine, cutaneous adverse drug reactions, HLA-B, Thai population
Procedia PDF Downloads 1914980 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 4444979 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1384978 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence
Procedia PDF Downloads 1194977 Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers
Authors: Soad Ali Yehia, Mohamed Shafik El-Ridi, Mina Ibrahim Tadros, Nolwa Gamal El-Sherif
Abstract:
Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h.Keywords: fexofenadine hydrochloride, taste masking, chitosan, orodispersible
Procedia PDF Downloads 3444976 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction
Authors: Mikhail Gritskevich, Sebastian Hohenstein
Abstract:
The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer
Procedia PDF Downloads 4204975 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3444974 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 1234973 A Doctrinal Research and Review of Hashtag Trademarks
Authors: Hetvi Trivedi
Abstract:
Technological escalation cannot be negated. The same is true for the benefits of technology. However, such escalation has interfered with the traditional theories of protection under Intellectual Property Rights. Out of the many trends that have disrupted the old-school understanding of Intellectual Property Rights, one is hashtags. What began modestly in the year 2007 has now earned a remarkable status, and coupled with the unprecedented rise in social media the hashtag culture has witnessed a monstrous growth. A tiny symbol on the keypad of phones or computers is now a major trend which also serves companies as a critical investment measure in establishing their brand in the market. Due to this a section of the Intellectual Property Rights- Trademarks is undergoing a humungous transformation with hashtags like #icebucket, #tbt or #smilewithacoke, getting trademark protection. So, as the traditional theories of IP take on the modern trends, it is necessary to understand the change and challenge at a theoretical and proportional level and where need be, question the change. Traditionally, Intellectual Property Rights serves the societal need for intellectual productions that ensure its holistic development as well as cultural, economic, social and technological progress. In a two-pronged effort at ensuring continuity of creativity, IPRs recognize the investment of individual efforts that go into creation by way of offering protection. Commonly placed under two major theories- Utilitarian and Natural, IPRs aim to accord protection and recognition to an individual’s creation or invention which serve as an incentive for further creations or inventions, thus fully protecting the creative, inventive or commercial labour invested in the same. In return, the creator by lending the public the access to the creation reaps various benefits. This way Intellectual Property Rights form a ‘social contract’ between the author and society. IPRs are similarly attached to a social function, whereby individual rights must be weighed against competing rights and to the farthest limit possible, both sets of rights must be treated in a balanced manner. To put it differently, both the society and the creator must be put on an equal footing with neither party’s rights subservient to the other. A close look through doctrinal research, at the recent trend of trademark protection, makes the social function of IPRs seem to be moving far from the basic philosophy. Thus, where technology interferes with the philosophies of law, it is important to check and allow such growth only in moderation, for none is superior than the other. The human expansionist nature may need everything under the sky that can be tweaked slightly to be counted and protected as Intellectual Property- like a common parlance word transformed into a hashtag, however IP in order to survive on its philosophies needs to strike a balance. A unanimous global decision on the judicious use of IPR recognition and protection is the need of the hour.Keywords: hashtag trademarks, intellectual property, social function, technology
Procedia PDF Downloads 1314972 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6634971 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells
Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika
Abstract:
Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine
Procedia PDF Downloads 2174970 Plant as an Alternative for Anti Depressant Drugs St John's Wort
Authors: Mahdi Akhbardeh
Abstract:
St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.Keywords: depression, St John's wort, Prozac, antidepressant
Procedia PDF Downloads 4884969 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1094968 Effects of Cannabis and Cocaine on Driving Related Tasks of Perception, Cognition, and Action
Authors: Michelle V. Tomczak, Reyhaneh Bakhtiari, Aaron Granley, Anthony Singhal
Abstract:
Objective: Cannabis and cocaine are associated with a range of mental and physical effects that can impair aspects of human behavior. Driving is a complex cognitive behavior that is an essential part of everyday life and can be broken down into many subcomponents, each of which can uniquely impact road safety. With the growing movement of jurisdictions to legalize cannabis, there is an increased focus on impairment and driving. The purpose of this study was to identify driving-related cognitive-performance deficits that are impacted by recreational drug use. Design and Methods: With the assistance of law enforcement agencies, we recruited over 300 participants under the influence of various drugs including cannabis and cocaine. These individuals performed a battery of computer-based tasks scientifically proven to be re-lated to on-road driving performance and designed to test response-speed, memory processes, perceptual-motor skills, and decision making. Data from a control group with healthy non-drug using adults was collected as well. Results: Compared to controls, the drug group showed def-icits in all tasks. The data also showed clear differences between the cannabis and cocaine groups where cannabis users were faster, and performed better on some aspects of the decision-making and perceptual-motor tasks. Memory performance was better in the cocaine group for simple tasks but not more complex tasks. Finally, the participants who consumed both drugs performed most similarly to the cannabis group. Conclusions: Our results show distinct and combined effects of cannabis and cocaine on human performance relating to driving. These dif-ferential effects are likely related to the unique effects of each drug on the human brain and how they distinctly contribute to mental states. Our results have important implications for road safety associated with driver impairment.Keywords: driving, cognitive impairment, recreational drug use, cannabis and cocaine
Procedia PDF Downloads 1264967 Understanding Racial Disparate Treatment of Juvenile Interpersonal Violent Offenders in the Juvenile Justice System Using Focal Concerns Theory
Authors: Suzanne Overstreet-Juenke
Abstract:
Disproportionate minority contact (DMC) is a salient issue that has been found at every stage of the decision-making process in the juvenile justice system. Existing research indicates that DMC influences adjudication for drug, property, and personal crimes. Because intimate partner violence (IPV) is a major public health problem and global concern, the current study examines DMC at adjudication among youth charged for crimes of interpersonal violence. This research uses administrative, Court Designated Worker (CDW) data collected from 2014 to 2016. The results are contextualized using Steffensmeier’s version of focal concerns theory of judicial decision-making. This study assesses race and two seriousness of offense measures to establish whether a link exists between race and adjudication. The results of the study is similar to prior research on the topic. These results are discussed in terms of policy implications, limitations, and future research.Keywords: race, disproportionate minority contact, focal concerns theory, juvenile
Procedia PDF Downloads 764966 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine
Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly
Abstract:
Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability
Procedia PDF Downloads 3544965 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy
Authors: Haile F. Darge, Hsieh C. Tsai
Abstract:
The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel
Procedia PDF Downloads 1344964 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation
Authors: G. B. Lim, C. H. Jeon, K. H. Jung
Abstract:
General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS
Procedia PDF Downloads 4924963 Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils
Authors: Bao Thach Nguyen, Abbas Mohajerani
Abstract:
The California bearing ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments, and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength, and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some fine-grained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.Keywords: California bearing ratio, fine-grained soils, soil physical properties, pavement, soil test
Procedia PDF Downloads 5094962 Religious Discrimination Against Small Business Owners: Evidence from the 1875 Cadastral Survey of Istanbul
Authors: Burak Unveren, Ecem Uygun, Özdemi̇r Teke
Abstract:
A large body of literature documents how the Ottoman Empire's economic decline in relation to Western Europe was exacerbated by the unequal legal treatment of its subjects based on creed. Motivated by this debate, we empirically explore whether property taxes collected from businesses in Istanbul discriminated against or favored non-Muslims after the cadastral survey of the capital in 1875. The survey was conducted to determine the property taxes. And the process was potentially susceptible to the biased views of the surveyors who calculated the taxes payable via their subjective appraisals of all real properties. According to our results, in contrast to widely held beliefs regarding 19th-century Istanbul, the number of Muslim shop owners is higher than that of non-Muslims. Moreover, we find evidence for taxes collected from non-Muslim shop and store owners to be higher compared to Muslims, even after controlling for all physical features (e.g., size, location, etc.). These results directly pertain to the fiscal capacity of the Ottoman state and its economic divergence from Europe in the 19th century. Surprisingly, the data also indicates no statistically different tax differentials between male and female property owners.Keywords: economic history, taxation, small business, discrimination
Procedia PDF Downloads 704961 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 102