Search results for: discrete-time queueing inventory model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17423

Search results for: discrete-time queueing inventory model

16763 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario

Authors: Vinod Kumar Jaysaval, Prateek Agarwal

Abstract:

Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.

Keywords: airborne radar, blind zone, clutter, probability of detection

Procedia PDF Downloads 470
16762 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 106
16761 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 197
16760 The Relationship between the Personality Traits and Self-Compassion with Psychological Well-Being in Iranian College Students

Authors: Abdolamir Gatezadeh, Rezvan K. A. Mohamamdi, Arash Jelodari

Abstract:

It has been well established that personality traits and self-compassion are associated with psychological well-being. Thus, the current research aimed to investigate the underlying mechanisms in a collectivist culture. Method: One hundred and fifty college students were chosen and filled out Ryff's Psychological Well-Being Scale, the NEO Personality Inventory, and Neff's Self-Compassion Scale. Results: The results of correlation analysis showed that there were significant relationships between the personality traits (neuroticism, extraversion, agreeableness, and conscientiousness) and self-compassion (self-kindness, isolation, mindfulness, and the total score of self-compassion) with psychological well-being. The regression analysis showed that neuroticism, extraversion, and conscientiousness significantly predicted psychological well-being. Discussion and conclusion: The cultural implications and future orientations have been discussed.

Keywords: college students, personality traits, psychological well-being, self-compassion

Procedia PDF Downloads 217
16759 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
16758 A Business Model Design Process for Social Enterprises: The Critical Role of the Environment

Authors: Hadia Abdel Aziz, Raghda El Ebrashi

Abstract:

Business models are shaped by their design space or the environment they are designed to be implemented in. The rapidly changing economic, technological, political, regulatory and market external environment severely affects business logic. This is particularly true for social enterprises whose core mission is to transform their environments, and thus, their whole business logic revolves around the interchange between the enterprise and the environment. The context in which social business operates imposes different business design constraints while at the same time, open up new design opportunities. It is also affected to a great extent by the impact that successful enterprises generate; a continuous loop of interaction that needs to be managed through a dynamic capability in order to generate a lasting powerful impact. This conceptual research synthesizes and analyzes literature on social enterprise, social enterprise business models, business model innovation, business model design, and the open system view theory to propose a new business model design process for social enterprises that takes into account the critical role of environmental factors. This process would help the social enterprise develop a dynamic capability that ensures the alignment of its business model to its environmental context, thus, maximizing its probability of success.

Keywords: social enterprise, business model, business model design, business model environment

Procedia PDF Downloads 374
16757 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 83
16756 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 150
16755 Social Media Retailing in the Creator Economy

Authors: Julianne Cai, Weili Xue, Yibin Wu

Abstract:

Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.

Keywords: content creation, creator economy, incentive strategy, platform retailing

Procedia PDF Downloads 117
16754 Moving beyond the Social Model of Disability by Engaging in Anti-Oppressive Social Work Practice

Authors: Irene Carter, Roy Hanes, Judy MacDonald

Abstract:

Considering that disability is universal and people with disabilities are part of all societies; that there is a connection between the disabled individual and the societal; and that it is society and social arrangements that disable people with impairments, contemporary disability discourse emphasizes the social model of disability to counter medical and rehabilitative models of disability. However, the social model does not go far enough in addressing the issues of oppression and inclusion. The authors indicate that the social model does not specifically or adequately denote the oppression of persons with disabilities, which is a central component of progressive social work practice with people with disabilities. The social model of disability does not go far enough in deconstructing disability and offering social workers, as well as people with disabilities a way of moving forward in terms of practice anchored in individual, familial and societal change. The social model of disability is expanded by incorporating principles of anti-oppression social work practice. Although the contextual analysis of the social model of disability is an important component there remains a need for social workers to provide service to individuals and their families, which will be illustrated through anti-oppressive practice (AOP). By applying an anti-oppressive model of practice to the above definitions, the authors not only deconstruct disability paradigms but illustrate how AOP offers a framework for social workers to engage with people with disabilities at the individual, familial and community levels of practice, promoting an emancipatory focus in working with people with disabilities. An anti- social- oppression social work model of disability connects the day-to-day hardships of people with disabilities to the direct consequence of oppression in the form of ableism. AOP theory finds many of its basic concepts within social-oppression theory and the social model of disability. It is often the case that practitioners, including social workers and psychologists, define people with disabilities’ as having or being a problem with the focus placed upon adjustment and coping. A case example will be used to illustrate how an AOP paradigm offers social work a more comprehensive and critical analysis and practice model for social work practice with and for people with disabilities than the traditional medical model, rehabilitative and social model approaches.

Keywords: anti-oppressive practice, disability, people with disabilities, social model of disability

Procedia PDF Downloads 1089
16753 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 524
16752 Comparison of Effect of Group Counseling with Cognitive Therapy Approach and Interactive Lectures on Anxiety during Pregnancy in Primiparas: A Clinical Trial

Authors: Zohre Shahhosseini, Mehdi Pourasghar, AliReza Khalilian, Fariba Salehi

Abstract:

Objective: The prevalence of anxiety during pregnancy, particularly in developing countries, and its adverse effects on mother and baby, can make pregnancy unpleasant for pregnant women. The effect of anxiety during pregnancy on birth outcomes and children can be a justification for screening of anxious pregnant women in periodic pregnancy care and helping them. In this study, researchers have investigated effects and comparison of group counseling (Cognitive therapy) and interactive lectures on anxiety during pregnancy of primiparas. Methods: The population studied in this semi-experimental trail was nulliparous pregnant women with backgrounds in health care centers in Sari city .They were studied during a period of 3 months from early March to end May 2016. Sample size in this study was 91 patients, who were randomly assigned to three groups: group counseling, interactive lecture, and control group. Demographic questionnaire and Speilberger State –Trait Anxiety Inventory (SPAI) was completed for all three groups after obtaining letter of consent and completing the initial checklist. Then interventions included 4 sessions for group counseling and 4 sessions for interactive lecture which were implemented in two sessions a week. 4 weeks after interventions, Speilberger State – Trait Anxiety Inventory (SPAI), completed by both group counseling and interactive lectures groups again. In control group, the second questionnaire was also completed 4 weeks after completing the initial questionnaire. Data analysis was performed using spss software version 18. At first, the Kalmogorov-Smiranov test was carried out and then chi square tests, Independent t-test, paired t-test, ANOVA test, and Dunnett's post hoc test were applied. Results: Findings show that group counseling and interactive lecture with reducing state and trait anxiety in significant level of P=0/000 contribute to reduction of anxiety in nulliparous pregnant mothers. However, in this study, group counseling was more effective than an interactive lecture in reducing participants' anxiety, but this difference was not significant (P≥0/05). Conclusions: According to the results of this study, it is suggested that by screening of psychological - mental problems of pregnant women in periodic care during pregnancy be considered by revised prenatal care plans and creation of counseling and training units at health centers. Besides owing to the fact that both interactive lecture and group counseling method were effective in reducing anxiety, these methods should be used proportionate to situations and facilities.

Keywords: anxiety, group counseling, cognitive therapy, interactive lecture, nulliparous

Procedia PDF Downloads 296
16751 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 544
16750 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 92
16749 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
16748 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 457
16747 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
16746 Psychometric Validation of Czech Version of Spiritual Needs Assessment for Patients: The First Part of Research

Authors: Lucie Mrackova, Helena Kisvetrova

Abstract:

Spirituality is an integral part of human life. In a secular environment, spiritual needs are often overlooked, especially in acute nursing care. Spiritual needs assessment for patients (SNAP), which also exists in the Czech version (SNAP-CZ), can be used for objective evaluation. The aim of this study was to measure the psychometric properties of SNAP-CZ and to find correlations between SNAP-CZ and sociodemographic and clinical variables. A cross-sectional study with tools assessing spiritual needs (SNAP-CZ), anxiety (Beck Anxiety Inventory; BAI), depression (Beck Depression Inventory; BDI), pain (Visual Analogue Scale; VAS), self-sufficiency (Barthel Index; BI); cognitive function (Montreal Cognitive Test; MoCa) and selected socio-demographic data was performed. The psychometric properties of SNAP-CZ were tested using factor analysis, reliability and validity tests, and correlations between the questionnaire and sociodemographic data and clinical variables. Internal consistency was established with Cronbach’s alfa for the overall score, respective domains, and individual items. Reliability was assessed by test-retest by Interclass correlation coefficient (ICC). Data for correlation analysis were processed according to Pearson's correlation coefficient. The study included 172 trauma patients (the mean age = 40.6 ± 12.1 years) who experienced polytrauma or severe monotrauma. There were a total of 106 (61.6%) male subjects, 140 (81.4%) respondents identified themselves as non-believers. The full-scale Cronbach's alpha was 0.907. The test-retest showed the reliability of the individual domains in the range of 0.924 to 0.960 ICC. Factor analysis resulted in a three-factor solution (psychosocial needs (alfa = 0.788), spiritual needs (alfa = 0.886) and religious needs (alfa = 0.841)). Correlation analysis using Pearson's correlation coefficient showed that the domain of psychosocial needs significantly correlated only with gender (r = 0.178, p = 0.020). Males had a statistically significant lower average value in this domain (mean = 12.5) compared to females (mean = 13.8). The domain of spiritual needs significantly correlated with gender (r = 0.199, p = 0.009), social status (r = 0.156, p = 0.043), faith (r = -0.250, p = 0.001), anxiety (r = 0.194, p = 0.011) and depression (r = 0.155, p = 0.044). The domain of religious needs significantly correlated with age (r = 0,208, p = 0,007), education (r = -0,161, p = 0,035), faith (r = -0,575, p < 0,0001) and depression (r = 0,179, p = 0,019). Overall, the whole SNAP scale significantly correlated with gender (r = 0.219, p = 0.004), social status (r = 0.175, p = 0.023), faith (r = -0.334, p <0.0001), anxiety (r = 0.177, p = 0.022) and depression (r = 0.173, p = 0.025). The results of this study corroborate the reliability of the SNAP-CZ and support its future use in the nursing care of trauma patients in a secular society. Acknowledgment: The study was supported by grant nr. IGA_FZV_2020_003.

Keywords: acute nursing care, assessment of spiritual needs, patient, psychometric validation, spirituality

Procedia PDF Downloads 104
16745 Green Logistics Management and Performance for Thailand’s Logistic Enterprises

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Logistics is the integrated management of all of the activities required to move products through the supply chain. For a typical product, this supply chain extends from a raw material source through the production and distribution system to the point of consumption and the associated reverse logistics. The logistical activities are comprised of freight transport, storage, inventory management, materials handling and all related information processing. This paper analyzes the green management system of logistics enterprise for Thailand and advances the concept of Green Logistics, which should be held by the public. In addition, it proposes that the government should strengthen its supervision and support for green logistics, and companies should construct self-disciplined green logistics management systems and corresponding processes, a reverse logistics management system and a modern green logistics information collection and management system.

Keywords: logistics, green logistics, management system, ecological economics

Procedia PDF Downloads 407
16744 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 481
16743 The Effectiveness of Metaphor Therapy on Depression among Female Students

Authors: Marzieh Talebzadeh Shoushtari

Abstract:

The present study aimed to determine the effectiveness of Metaphor therapy on depression among female students. The sample included 60 female students with depression symptoms selected by simple sampling and randomly divided into two equal groups (experimental and control groups). Beck Depression Inventory was used to measure the variables. This was an experimental study with a pre-test/post-test design with control group. Eight metaphor therapy sessions were held for the experimental group. A post-test was administered to both groups. Data were analyzed using multivariate analysis of covariance (MANCOVA). Results showed that the Metaphor therapy decreased depression in the experimental group compared to the control group.

Keywords: metaphor therapy, depression, female, students

Procedia PDF Downloads 454
16742 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
16741 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 234
16740 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations

Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad

Abstract:

In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).

Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates

Procedia PDF Downloads 220
16739 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
16738 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
16737 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
16736 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 361
16735 Lying in a Sender-Receiver Deception Game: Effects of Gender and Motivation to Deceive

Authors: Eitan Elaad, Yeela Gal-Gonen

Abstract:

Two studies examined gender differences in lying when the truth-telling bias prevailed and when inspiring lying and distrust. The first study used 156 participants from the community (78 pairs). First, participants completed the Narcissistic Personality Inventory, the Lie- and Truth Ability Assessment Scale (LTAAS), and the Rational-Experiential Inventory. Then, they participated in a deception game where they performed as senders and receivers of true and false communications. Their goal was to retain as many points as possible according to a payoff matrix that specified the reward they would gain for any possible outcome. Results indicated that males in the sender position lied more and were more successful tellers of lies and truths than females. On the other hand, males, as receivers, trusted less than females but were not better at detecting lies and truths. We explained the results by a. Male's high perceived lie-telling ability. We observed that confidence in telling lies guided participants to increase their use of lies. Male's lie-telling confidence corresponded to earlier accounts that showed a consistent association between high self-assessed lying ability, reports of frequent lying, and predictions of actual lying in experimental settings; b. Male's narcissistic features. Earlier accounts described positive relations between narcissism and reported lying or unethical behavior in everyday life situations. Predictions about the association between narcissism and frequent lying received support in the present study. Furthermore, males scored higher than females on the narcissism scale; and c. Male's experiential thinking style. We observed that males scored higher than females on the experiential thinking style scale. We further hypothesized that the experiential thinking style predicts frequent lying in the deception game. Results confirmed the hypothesis. The second study used one hundred volunteers (40 females) who underwent the same procedure. However, the payoff matrix encouraged lying and distrust. Results showed that male participants lied more than females. We found no gender differences in trust. Males and females did not differ in their success of telling and detecting lies and truths. Participants also completed the LTAAS questionnaire. Males assessed their lie-telling ability higher than females, but the ability assessment did not predict lying frequency. A final note. The present design is limited to low stakes. Participants knew that they were participating in a game, and they would not experience any consequences from their deception in the game. Therefore, we advise caution when applying the present results to lying under high stakes.

Keywords: gender, lying, detection of deception, information processing style, self-assessed lying ability

Procedia PDF Downloads 149
16734 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers

Authors: Yungtai Lo

Abstract:

The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.

Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model

Procedia PDF Downloads 288