Search results for: data integrity and privacy
25150 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 8225149 Downhole Corrosion Inhibition Treatment for Water Supply Wells
Authors: Nayif Alrasheedi, Sultan Almutairi
Abstract:
Field-wide, a water supply wells’ downhole corrosion inhibition program is being applied to maintain downhole component integrity and keep the fluid corrosivity below 5 MPY. Batch treatment is currently used to inject the oil field chemical. This work is a case study consisting of analytical procedures used to optimize the frequency of the good corrosion inhibition treatments. During the study, a corrosion cell was fitted with a special three-electrode configuration for electrochemical measurements, electrochemical linear polarization, corrosion monitoring, and microbial analysis. This study revealed that the current practice is not able to mitigate material corrosion in the downhole system for more than three months.Keywords: downhole corrosion inhibition, electrochemical measurements, electrochemical linear polarization, corrosion monitoring
Procedia PDF Downloads 18225148 Re-Invent Corporate Governance - Ethical Way
Authors: Talha Sareshwala
Abstract:
The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.Keywords: business, entrepreneur, ethics, governance, transparency.
Procedia PDF Downloads 7425147 Mass Media and Electoral Conflict Management in Kogi State, Nigeria
Authors: Okpanachi Linus Odiji, Chris Ogwu Attah
Abstract:
Election is no doubt widely assumed as one of the most suitable means of resolving political quagmires even though it has never been bereft of conflict which can manifest before, during, or after polls. What, however, advances democracy and promotes electoral integrity is the existence and effectiveness of institutional frameworks for electoral conflict management. Electoral conflicts are no doubt unique in the sense that they represent the struggles of people over the control of public resources. In most cases, the stakes involved are high and emotional that they do not only undermine inter-group relationship but also threaten national security. The need, therefore, for an effectively functional conflict management apparatus becomes imperative. While at the State level, there exist numerous governmental initiatives at various electoral stages aimed at managing conflicts, this paper examines the activities of the mass media, which is another prominent stakeholder in the electoral process. Even though media influence has increased tremendously in the last decade, researchers are yet to agree on its utility in the management of conflicts. Guided by the social responsibility theory of media reporting and drawing data from observed trends in Kogi state, the paper, which context analyses the 2019 gubernatorial election coverage in the state, observes both conflict escalation and de-escalation roles in the media. To mitigate conflict reporting misrepresentation, therefore, a common approach to conflict reporting should be designed and ordered by the National Broadcasting Commission as well as the Nigerian Press Council. This should be garnished with the training of journalists on conflict reporting and development of a standard conflict reporting procedure.Keywords: conflict management, electoral conflict, mass media, media reporting
Procedia PDF Downloads 14925146 Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions
Authors: M. Sandeep Kumar, Vasu Velagapudi, A. Venugopal
Abstract:
When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid.Keywords: nanofluids, MQL, residual stress, Inconel-718
Procedia PDF Downloads 26025145 Of Digital Games and Dignity: Rationalizing E-Sports Amidst Stereotypes Associated with Gamers
Authors: Sarthak Mohapatra, Ajith Babu, Shyam Prasad Ghosh
Abstract:
The community of gamers has been at the crux of stigmatization and marginalization by the larger society, resulting in dignity erosion. India presents a unique context where e-sports have recently seen large-scale investments, a massive userbase, and appreciable demand for gaming as a career option. Yet the apprehension towards gaming is salient among parents and non-gamers who engage in the de-dignification of gamers, by advocating the discourse of violence promotion via video games. Even the government is relentless in banning games due to data privacy issues. Thus, the current study explores the experiences of gamers and how they navigate these de-dignifying circumstances. The study follows an exploratory qualitative approach where in-depth interviews are used as data collection tools guided by a semi-structured questionnaire. A total of 25 individuals were interviewed comprising casual gamers, professional gamers, and individuals who are indirectly impacted by gaming including parents, relatives, and friends of gamers. Thematic analysis via three-level coding is used to arrive at broad themes (categories) and their sub-themes. The results indicate that the de-dignification of gamers results from attaching stereotypes of introversion, aggression, low intelligence, and low aspirations to them. It is interesting to note that the intensity of de-dignification varies and is more salient in violent shooting games which are perceived to require low cognitive resources to master. The moral disengagement of gamers while playing violent video games becomes the basis for de-dignification. Findings reveal that circumventing de-dignification required gamers to engage in several tactics that included playing behind closed doors, consciously hiding the gamer identity, rationalizing behavior by idolizing professionals, bragging about achievements within the game, and so on. Theoretically, it contributes to dignity and social identity literature by focusing on stereotyping and stigmatization. From a policy perspective, improving legitimacy toward gaming is expected to improve the social standing of gamers and professionals. For practitioners, it is important that proper channels of promotion and communication are used to educate the non-gamers so that the stereotypes blur away.Keywords: dignity, social identity, stereotyping, video games
Procedia PDF Downloads 10025144 Security Design of Root of Trust Based on RISC-V
Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li
Abstract:
Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Design a reliable Root of Trust and guarantee its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V Root of Trust at the hardware level. To effectively safeguard the security of the Root of Trust, researches on security safeguard technology on the Root of Trust have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the Root of Trust’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the Root of Trust’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.Keywords: root of trust, secure boot, memory protection, hardware security
Procedia PDF Downloads 21525143 Healthcare Big Data Analytics Using Hadoop
Authors: Chellammal Surianarayanan
Abstract:
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare
Procedia PDF Downloads 41325142 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43325141 Foreign Policy and National Security Dilemma: Examining Nigerian Experience
Authors: Shuaibu Umar Abdul
Abstract:
The essence of any state as well as government is to ensure and advance the security of lives and property of its citizens. As a result, providing security in all spheres ranging from safeguarding the territorial integrity, security of lives and property of the citizens as well as economic emancipation have constitute the core objectives cum national interest of virtually all country’s foreign policy in the world. In view of this imperative above, Nigeria has enshrined in the early part of her 1999 constitution as amended, as its duty and responsibility as a state, to ensure security of lives and property of its citizens. Yet, it does not make any significant shift as it relates to the country’s fundamental security needs as exemplified by the current enormous security challenges that reduced the country’s fortune to the background in all ramifications. The study chooses realist paradigm as theoretical underpinning which emphasizes that exigency of the moment should always take priority in the pursuit of foreign policy. The study is historical, descriptive and narrative in method and character. Data for the study was sourced from secondary sources and analysed via content analysis. The study found out that it is lack of political will on the side of the government to guarantee a just and egalitarian society that will be of benefit to all citizens. This could be more appreciated when looking at the gaps between the theory in Nigerian foreign policy and the practice as exemplified by the action or inaction of the government to ensure security in the state. On this account, the study recommends that until the leaderships in Nigerian foreign policy recognized the need for political will and respect for constitutionalism to ensure security of its citizens and territory, otherwise achieving great Nigeria will remain an illusion.Keywords: foreign policy, nation, national security, Nigeria, security
Procedia PDF Downloads 51425140 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines
Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay
Abstract:
One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.Keywords: big data, data analytics, higher education, republic of the philippines, assessment
Procedia PDF Downloads 34825139 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks
Authors: Neetesh Saxena, Narendra S. Chaudhari
Abstract:
Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS
Procedia PDF Downloads 41625138 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 7625137 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 77925136 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects
Authors: Behnam Tavakkol
Abstract:
Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data
Procedia PDF Downloads 21525135 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro
Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich
Abstract:
Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve
Procedia PDF Downloads 15025134 The Challenge of Assessing Social AI Threats
Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi
Abstract:
The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.Keywords: social threats, artificial Intelligence, mitigation, social experiment
Procedia PDF Downloads 6525133 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations
Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa
Abstract:
This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy
Procedia PDF Downloads 20425132 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods
Procedia PDF Downloads 36125131 The Engineering Design of the Temple of Dendera in the City of Qena, Egypt
Authors: Shady Ahmed Emara
Abstract:
Introductory statement: The temple is characterized by a unique engineering design. This study aimed to explain the means that were used to reach this design. Background of the Study: Temple of Dandara consists of 24 columns with a height of 18m and a diameter of 2m. This paper is about the engineering method for constructing these huge columns. Two experiments were conducted at the temple. The first experiment used AutoCAD to compare the similarity of the columns in terms of dimensions. The second experiment used a laser rangefinder to measure the extent of the match between the heights between the columns. The Major Findings of the Study: (1) The method of constructing the columns was through several divided layers. It is divided into two halves and built opposite each other to maintain the integrity of the columns. (2) The match between the heights of the columns, which reached the error rate between one column and another, is only 1 mm. Concluding Statement: Both experiences will be explained through 2D and 3D.Keywords: ancient, construction, architecture, building
Procedia PDF Downloads 10325130 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 6625129 Local Ordinances with Sharia Nuances in Pluralism Society of Indonesia: Convergence or Divergence
Authors: Farida Prihatini
Abstract:
As a largest Muslim country in the world with around 215 Muslim inhabitants, Indonesia interestingly is not an Islamic country. Yet, Indonesia is not a secular country as well. The country has committed to be a unity in diversity country where people from various socio-political background may be coexistent live in this archipelago country. However, many provinces and Muslim groups are disposed of special regulation for Muslim people, namely local ordinances with sharia nuances, applied specifically in provinces, cities or regions where Muslim inhabitants are the majority. For the last two decades, particularly since Indonesia reform movement of 1998, a lot of local ordinances (Peraturan Daerah) with Sharia nuance have been enacted and applied in several provinces, cities and regions in Indonesia. The local ordinances are mostly deal with restriction of alcohol, prohibition of prostitution, Al Qur'an literacy, obligation to wear Muslim attire and zakat or alms management. Some of local ordinances have been warmly welcomed by society, while other ordinances have created tension. Those who oppose the ordinances believe that such things regulated by the ordinances are in violation of human rights and democracy, part of privacy rights of the people and must not be regulated by the State or local government. This paper describes the dynamic of local Ordinances with sharia nuances in Indonesia, in this research is limited to three ordinances: on the restriction of alcohol, prohibition of prostitution and obligation to wear Muslim attire. The researcher employs a normative method by studying secondary data and local ordinances in selected areas in Indonesia. The findings of the paper are that local ordinances with sharia nuances are indeed part of the needs of society, yet, in their implementation must take the pluralism of Indonesia and the state basic foundation, which is Pancasila (five pillars) into account.Keywords: local, ordinances, sharia, rights
Procedia PDF Downloads 27625128 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 5925127 Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling
Authors: S. Suman, G. N. Singh
Abstract:
This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents.Keywords: scrambled response, sensitive characteristic, successive sampling, optimum replacement strategy
Procedia PDF Downloads 17725126 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication
Authors: Anny Retnowati, Elisabeth Sundari
Abstract:
This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.Keywords: access, health data, medical records, personal data, protection
Procedia PDF Downloads 9325125 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 35625124 Analysis and Forecasting of Bitcoin Price Using Exogenous Data
Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka
Abstract:
Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance
Procedia PDF Downloads 35525123 Preschoolers’ Selective Trust in Moral Promises
Authors: Yuanxia Zheng, Min Zhong, Cong Xin, Guoxiong Liu, Liqi Zhu
Abstract:
Trust is a critical foundation of social interaction and development, playing a significant role in the physical and mental well-being of children, as well as their social participation. Previous research has demonstrated that young children do not blindly trust others but make selective trust judgments based on available information. The characteristics of speakers can influence children’s trust judgments. According to Mayer et al.’s model of trust, these characteristics of speakers, including ability, benevolence, and integrity, can influence children’s trust judgments. While previous research has focused primarily on the effects of ability and benevolence, there has been relatively little attention paid to integrity, which refers to individuals’ adherence to promises, fairness, and justice. This study focuses specifically on how keeping/breaking promises affects young children’s trust judgments. The paradigm of selective trust was employed in two experiments. A sample size of 100 children was required for an effect size of w = 0.30,α = 0.05,1-β = 0.85, using G*Power 3.1. This study employed a 2×2 within-subjects design to investigate the effects of moral valence of promises (within-subjects factor: moral vs. immoral promises), and fulfilment of promises (within-subjects factor: kept vs. broken promises) on children’s trust judgments (divided into declarative and promising contexts). In Experiment 1 adapted binary choice paradigms, presenting 118 preschoolers (62 girls, Mean age = 4.99 years, SD = 0.78) with four conflict scenarios involving the keeping or breaking moral/immoral promises, in order to investigate children’s trust judgments. Experiment 2 utilized single choice paradigms, in which 112 preschoolers (57 girls, Mean age = 4.94 years, SD = 0.80) were presented four stories to examine their level of trust. The results of Experiment 1 showed that preschoolers selectively trusted both promisors who kept moral promises and those who broke immoral promises, as well as their assertions and new promises. Additionally, the 5.5-6.5-year-old children are more likely to trust both promisors who keep moral promises and those who break immoral promises more than the 3.5- 4.5-year-old children. Moreover, preschoolers are more likely to make accurate trust judgments towards promisor who kept moral promise compared to those who broke immoral promises. The results of Experiment 2 showed significant differences of preschoolers’ trust degree: kept moral promise > broke immoral promise > broke moral promise ≈ kept immoral promise. This study is the first to investigate the development of trust judgement in moral promise among preschoolers aged 3.5-6.5. The results show that preschoolers can consider both valence and fulfilment of promises when making trust judgments. Furthermore, as preschoolers mature, they become more inclined to trust promisors who keep moral promises and those who break immoral promises. Additionally, the study reveals that preschoolers have the highest level of trust in promisors who kept moral promises, followed by those who broke immoral promises. Promisors who broke moral promises and those who kept immoral promises are trusted the least. These findings contribute valuable insights to our understanding of moral promises and trust judgment.Keywords: promise, trust, moral judgement, preschoolers
Procedia PDF Downloads 5425122 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 47725121 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts
Authors: Sombol Mokhles
Abstract:
This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities
Procedia PDF Downloads 99