Search results for: damage mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5309

Search results for: damage mechanism

4649 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 232
4648 The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests

Authors: Ismail Akkaya, Mucip Tapan, Ali Ozvan

Abstract:

Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values.

Keywords: damaged building, pressuremeter, standard penetration test, low and high plasticity clay

Procedia PDF Downloads 314
4647 Determination of Harmful Important Mite (ACARI) and Nematoda Species, Their Distribution and Their Control Possibility on Garlic and Onion Growing Areas in Turkey

Authors: Cihan Cilbircioğlu

Abstract:

Allium sativum L.(garlic) and Allium. cepa L. (onion) are the most common species of the Allium spp. and are produced at the very high rate all over the world. The yield loss caused by pests is the most important problem in the production of these crops. In the absence of control measures, yield loss would be around 35% on average. The yield loss sometimes depending on the pest species and population density can reach about 100%. Mites and nematodes are the most important pests of them. These pests that cause damage to A. sativum and A. cepa shows a wide range of taxonomic categories. The number of common pest mite and nematode species that cause damage to either A. sativum and A. cepa are over 20 species. In this study, detailed information on morphology, life cycle, management, and symptoms of the economically most important harmful important mite (acari) and nematode species of onion and garlic has been provided through careful survey of corresponding researches in Turkey and given information about new practices and approaches on their controls.

Keywords: onion, garlic, pest, acari, nematoda control methods, Turkey

Procedia PDF Downloads 483
4646 Hepatoprotective Activity of Ethanolic Extract of Terminalia paniculata against Anti-Tubercular Drugs (ATT) Induced Hepatotoxicity in Wistar Albino Rats

Authors: Mohana Babu Amberkar, Meena Kumari K, Ravi, Arjun, Christopher Rockson

Abstract:

The aim of this research is to evaluate the hepatoprotective activity of Terminalia paniculata (Tp) against ATT induced hepatic damage in rats.Three hepatotoxic ATT drugs Isoniazid + Rifampicin + Pyrazinamide, silymarin as standard hepatoprotective drug and 0.5% carboxymethylcellulose (CMC) as a control were used. Tp extract and silymarin were administered orally with ATT drugs for 90 days. Two doses 250 and 500 mg/kg of Tp extract, ATT drugs and silymarin were administered as suspensions with 0.5% CMC. ATT treated rats showed a significant increase in aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and lipid peroxides in the serum vs. control. Treatment of silymarin and Tp (250mg/kg) extract showed hepatoprotective activity against the hepatic damage by ATT. This was evident from significant reduction in serum liver enzymes levels, and also there was a significant increase in serum proteins, albumin and total liver tissue thiols as compared to the ATT treated groups. Tp was found to possess hepatoprotective property.

Keywords: antitubercular drugs, hepatoprotective, liver enzymes, Terminalia paniculata

Procedia PDF Downloads 429
4645 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study

Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang

Abstract:

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.

Keywords: brain, cortical folding, finite element, three hinge

Procedia PDF Downloads 231
4644 Enabling Quantitative Urban Sustainability Assessment with Big Data

Authors: Changfeng Fu

Abstract:

Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.

Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data

Procedia PDF Downloads 353
4643 Traumatic Chiasmal Syndrome Following Traumatic Brain Injury

Authors: Jiping Cai, Ningzhi Wangyang, Jun Shao

Abstract:

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality that leads to structural and functional damage in several parts of the brain, such as cranial nerves, optic nerve tract or other circuitry involved in vision and occipital lobe, depending on its location and severity. As a result, the function associated with vision processing and perception are significantly affected and cause blurred vision, double vision, decreased peripheral vision and blindness. Here two cases complaining of monocular vision loss (actually temporal hemianopia) due to traumatic chiasmal syndrome after frontal head injury were reported, and were compared the findings with individual case reports published in the literature. Reported cases of traumatic chiasmal syndrome appear to share some common features, such as injury to the frontal bone and fracture of the anterior skull base. The degree of bitemporal hemianopia and visual loss acuity have a variable presentation and was not necessarily related to the severity of the craniocerebral trauma. Chiasmal injury may occur even in the absence bony chip impingement. Isolated bitemporal hemianopia is rare and clinical improvement usually may not occur. Mechanisms of damage to the optic chiasm after trauma include direct tearing, contusion haemorrhage and contusion necrosis, and secondary mechanisms such as cell death, inflammation, edema, neurogenesis impairment and axonal damage associated with TBI. Beside visual field test, MRI evaluation of optic pathways seems to the strong objective evidence to demonstrate the impairment of the integrity of visual systems following TBI. Therefore, traumatic chiasmal syndrome should be considered as a differential diagnosis by both neurosurgeons and ophthalmologists in patients presenting with visual impairment, especially bitemporal hemianopia after head injury causing frontal and anterior skull base fracture.

Keywords: bitemporal hemianopia, brain injury, optic chiasma, traumatic chiasmal syndrome.

Procedia PDF Downloads 72
4642 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 432
4641 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 203
4640 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 131
4639 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures

Authors: A. T. Al-Isawi, P. E. F. Collins

Abstract:

The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.

Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction

Procedia PDF Downloads 119
4638 Effects of Benzo(k)Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on DNA Damage and Oxidative Stress in Marine Gastropod Morula Granulata

Authors: Jacky Bhagat, Baban S Ingole

Abstract:

In this study, in vivo experiments were carried out to investigate the effects of a toxic polycyclic aromatic hydrocarbon (PAH), benzo(k)fluoranthene (B[k]F), on marine gastropod, Morula granulata collected from Goa, west coast of India. Snails were exposed to different concentrations of B(k)F (1, 10, 25 and 50 µg/L) for 96 h. The genotoxic effects were evaluated by measuring DNA strand breaks using alkaline comet assay and oxidative stress were measured with the help of battery of biomarkers such as superoxide dismutase (SOD) catalase (CAT), glutathione-s-transferase (GST), and lipid peroxidation (LPO). Concentration-dependent increase in percentage tail DNA (TDNA) was observed in snails exposed to B(k)F. Exposure concentrations above 1 µg/L of B(k)F, showed significant increase in SOD activity and LPO value in snails. After 96 h, SOD activity were found to be doubled for 50 µg/L of B(k)F with reference to control. Significant increase in CAT and GST activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage.

Keywords: benzo(k)fluoranthene, comet assay, gastropod, oxidative stress

Procedia PDF Downloads 337
4637 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.

Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers

Procedia PDF Downloads 479
4636 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle

Authors: Barenten Suciu

Abstract:

In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.

Keywords: high-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.

Procedia PDF Downloads 289
4635 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer

Procedia PDF Downloads 345
4634 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 315
4633 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 125
4632 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies

Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran

Abstract:

The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.

Keywords: Tagetes erecta, corrosion, adsorption, inhibitor

Procedia PDF Downloads 241
4631 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 165
4630 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 250
4629 Corrosion Mitigation in Gas Facilities Piping Through the Use of FBE Coated Pipes and Corrosion Resistant Alloy Girth Welds

Authors: Fadi Chammas, Saad Alkhaldi, Tariq Alghamdi, Stefano Alexandirs

Abstract:

The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately (1700) breakout flanges, and prevent the potential hydrocarbon leaks.

Keywords: pipelines, corrosion, cost-saving, project completion

Procedia PDF Downloads 118
4628 Enhancement of CO2 Capturing Performance of N-Methyldiethanolamine (MDEA) Using with New Class Functionalized Ionic Liquids: Kinetics and Interaction Mechanism Analysis

Authors: Surya Chandra Tiwari, Kamal Kishore Pant, Sreedevi Upadhyayula

Abstract:

CO2 capture using benign cost-effective solvents is an essential unit operation not only in the process industry for CO2 separation and recovery from industrial off-gas streams but also for direct capture from air to clean the environment. Several solvents are identified, by researchers, with high CO2 capture efficiency due to their favorable chemical and physical properties, interaction mechanism with CO2, and low regeneration energy cost. However, N-Methyldiethanolamine (MDEA) is the most frequently used solvent for CO2 capture with promoters such as piperazine (Pz) and monoethanolamine (MEA). These promoters have several issues such as low thermal stability, heat-stable salt formation, and being highly degradable. Therefore, new class promoters need to be used to overcome these issues. Functionalized ionic liquids (FILs) have the potential to overcome these limitations. Hence, in this work, four different new class functionalized ionic liquids (FILs) were used as promoters and determined their effectivity toward enhancement of the CO2 absorption performance. The CO2 absorption is performed at different pressure (2 bar, 4.4 bar, and 7 bar) and different temperature (303, 313, and 323K). The results confirmed that CO2 loading increases around 18 to 22% after 5wt% FILs blended in the MDEA. It was noticed that the CO2 loading increases with increasing pressure and decreases with increasing temperature for all absorbents systems. Further, the absorption kinetics was determined, and results showed that all the FILs provide an excellent absorption rate enhancement. Additionally, for the interaction mechanism study, 13C NMR analysis was performed for the blend aqueous MDEA-CO2 system. The results suggested that the FILs blend MDEA system produced a high amount of carbamates and bicarbonates during CO2 absorption, which further decreases with increasing temperature. Eventually, regeneration energy was calculated, and results confirmed that the energy heat duty penalty was lower in the [TETAH][Im] blend MDEA system. Overall, [TETAH][Pz], [TETAH][Im], [DETAH][Im] and [DETAH][Tz] showed the promising ability as promoters to enhance CO2 capturing performance of MDEA.

Keywords: CO2 capture, interaction mechanism, kinetics, Ionic liquids

Procedia PDF Downloads 107
4627 Payments for Forest Environmental Services: Advantages and Disadvantages in the Different Mechanisms in Vietnam North Central Area

Authors: Huong Nguyen Thi Thanh, Van Mai Thi Khanh

Abstract:

For around the world, payments for environmental services have been implemented since the late 1970s in Europe and North America; then, it was spread to Latin America, Asia, Africa, and finally Oceania in 2008. In Vietnam, payments for environmental services are an interesting issue recently with the forest as the main focus and therefore known as the program on payment for forest environmental services (PFES). PFES was piloted in Lam Dong and Son La in 2008 and has been widely applied in many provinces after 2010. PFES is in the orientation for the socialization of national forest protection in Vietnam and has made great strides in the last decade. By using the primary data and secondary data simultaneously, the paper clarifies two cases of implementing PFES in the Vietnam North Central area with the different mechanisms of payment. In the first case at Phu Loc district (Thua Thien Hue province), PFES is an indirect method by a water supply company via the Forest Protection and Development Fund. In the second one at Phong Nha – Ke Bang National Park (Quang Binh Province), tourism companies are the direct payers to forest owners. The paper describes the PFES implementation process at each site, clarifies the payment mechanism, and models the relationship between stakeholders in PFES implementation. Based on the current status of PFES sites, the paper compares and analyzes the advantages and disadvantages of the two payment methods. Finally, the paper proposes recommendations to improve the existing shortcomings in each payment mechanism.

Keywords: advantages and disadvantages, forest environmental services, forest protection, payment mechanism

Procedia PDF Downloads 119
4626 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 558
4625 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 274
4624 Mechanistic Analysis of an L-2-Haloacid Dehalogenase (DehL) from Rhizobium Sp. RC1: Computational Approach

Authors: Aliyu Adamu, Fahrul Huyop, Roswanira Abdul Wahab, Mohd Shahir Shamsir

Abstract:

Halogenated organic compounds occur in huge amount in biosphere. This is attributable to the diverse use of halogen-based compounds in the synthesis of various industrially important products. Halogenated compound is toxic and may persist in the environment, thereby causing serious health and environmental pollution problems. L-2-haloacid dehalogenases (EC 3.8.1.2) catalyse the specific cleavage of carbon-halogen bond in L-isomers of halogenated compounds, which consequently reverse the effects of environmental halogen-associated pollution. To enhance the efficiency and utility of these enzymes, this study investigates the catalytic amino acid residues and the molecular functional mechanism of DehL, by classical molecular dynamic simulations, MM-PBSA and ab initio fragments molecular orbital (FMO) calculations. The results of the study will serve as the basis for the molecular engineering of the enzyme.

Keywords: DehL, Functional mechanism, Catalytic residues, L-2-haloacid dehalogenase

Procedia PDF Downloads 351
4623 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments

Authors: G. Carrero, C. Contreras, M. J. Hendzel

Abstract:

Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.

Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation

Procedia PDF Downloads 427
4622 Stem Cell Augmentation Therapy for Cardiovascular Risk in Ankylosing Spondylitis: STATIN-as Study

Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan

Abstract:

Objective: Bone marrow derived stem cells, endothelial progenitor cells (EPCs), protect against atherosclerotic vascular damage. However, EPCs are depleted in AS and contribute to the enhanced cardiovascular risk. Statins have a protective effect in CAD and diabetes by enhancing the proliferation, migration and survival of EPCs. Therapeutic potential of augmenting EPCs to treat the heightened cardiovascular risk of AS has not yet been exploited. We aimed to investigate the effect of rosuvastatin on EPCs population and inflammation in AS. Methods: 30 AS patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=15) and placebo (n=15) as an adjunct to existing stable anti-rheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures (BASDAI, BASFI, CRP and ESR), pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) and lipids were measured at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin. At 6 months, BASDAI, BASFI, ESR, CRP, TNF-α, and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and BASDAI, CRP and IL-6 after rosuvastatin treatment. Conclusion: First study to show that rosuvastatin augments EPCs population in AS. This defines a novel mechanism of rosuvastatin treatment in AS: the augmentation of EPCs with improvement in proinflammatory cytokines and inflammatory disease activity. The augmentation of EPCs by rosuvastatin may provide a novel strategy to prevent cardiovascular events in AS.

Keywords: ankylosing spondylitis, Endothelial Progenitor Cells, inflammation, pro-inflammatory cytokines, rosuvastatin

Procedia PDF Downloads 349
4621 Avian and Rodent Pest Infestations of Lowland Rice (Oryza sativa L.) and Evaluation of Attributable Losses in Savanna Transition Environment

Authors: Okwara O. S., Osunsina I. O. O., Pitan O. R., Afolabi C. G.

Abstract:

Rice (Oryza sativa L.) belongs to the family poaceae and has become the most popular food. Globally, this crop is been faced with the menace of vertebrate pests, of which birds and rodents are the most implicated. The study avian and rodents’ infestations and the evaluation of attributable losses was carried out in 2020 and 2021 with the objectives of identifying the types of bird and rodent species associated with lowland rice and to determine the infestation levels, damage intensity, and the crop loss induced by these pests. The experiment was laid out in a split plot arrangement fitted into a Randomized Complete Block Design (RCBD), with the main plots being protected and unprotected groups and the sub-plots being four rice varieties, Ofada, WITA-4, NERICA L-34, and Arica-3. Data collection was done over a 16-week period, and the data obtained were transformed using square root transformation model before Analysis of Variance (ANOVA) was done at 5% probability level. The results showed the infestation levels of both birds and rodents across all the treatment means of thevarieties as not significantly different (p > 0.05) in both seasons. The damage intensity by these pests in both years were also not significantly different (p > 0.05) among the means of the varieties, which explains the diverse feeding nature of birds and rodents when it comes to infestations. The infestation level under the protected group was significantly lower (p < 0.05) than the infestation level recorded under the unprotected group.Consequently, an estimated crop loss of 91.94 % and 90.75 % were recorded in 2020 and 2021, respectively, andthe identified pest birds were Ploceus melanocephalus, Ploceus cuculatus, and Spermestes cucullatus. Conclusively, vertebrates pest cause damage to lowland rice which could result to a high percentage crop loss if left uncontrolled.

Keywords: pests, infestations, evaluation, losses, rodents, avian

Procedia PDF Downloads 118
4620 Coupled Effect of Pulsed Current and Stress State on Fracture Behavior of Ultrathin Superalloy Sheet

Authors: Shuangxin Wu

Abstract:

Superalloy ultra-thin-walled components occupy a considerable proportion of aero engines and play an increasingly important role in structural weight reduction and performance improvement. To solve problems such as high deformation resistance and poor formability at room temperature, the introduction of pulse current in the processing process can improve the plasticity of metal materials, but the influence mechanism of pulse current on the forming limit of superalloy ultra-thin sheet is not clear, which is of great significance for determining the material processing window and improving the micro-forming process. The effect of pulse current on the microstructure evolution of superalloy thin plates was observed by optical microscopy (OM) and X-ray diffraction topography (XRT) by applying pulse current to GH3039 with a thickness of 0.2mm under plane strain and uniaxial tensile states. Compared with the specimen without pulse current applied at the same temperature, the internal void volume fraction is significantly reduced, reflecting the non-thermal effect of pulse current on the growth of micro-pores. ED (electrically deforming) specimens have larger and deeper dimples, but the elongation is not significantly improved because the pulse current promotes the void coalescence process, resulting in material fracture. The electro-plastic phenomenon is more obvious in the plane strain state, which is closely related to the effect of stress triaxial degree on the void evolution under pulsed current.

Keywords: pulse current, superalloy, ductile fracture, void damage

Procedia PDF Downloads 61