Search results for: correlation and prediction
5278 Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) Pollution Effects on Blood Metabolic Factors of Periophthalmus waltoni from Northern Coast of the Persian Gulf
Authors: Majid Afkhami, Maryam Ehsanpour
Abstract:
The present study provides information about the nature of adverse effects on fish and the ecological impact that polycyclic aromatic hydrocarbons (PAHs) pollutant are having in the northern coast of Hormuz Strait. The glucose and cholesterol levels were higher in fish from the St3 than in Walton's mudskipper from other stations however St3 samples had lowest total proteins levels. There was a significant positive correlation between glucose and cholesterol with PAHs concentrations in sediment and tissue samples (P<0.05). However, total proteins had adverse significant correlation with PAHs concentrations (P>0.05). The adverse correlation was seen between length and body weight of fish samples with PAHs concentrations. According to the results of this study, the monitoring of contaminants bioaccumulation in the northern part of Hormuz Strait is necessary, because this will give an indication of the temporal and spatial extent of the process, as well as an assessment of the potential impact on aquatic organisms health.Keywords: PAHs, blood metabolic factors, Periophthalmus waltoni, Hormuz Strait
Procedia PDF Downloads 3325277 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: bubbly flows, log law, boundary layer, CFD
Procedia PDF Downloads 2785276 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3145275 Rapid Discrimination of Porcine and Tilapia Fish Gelatin by Fourier Transform Infrared- Attenuated Total Reflection Combined with 2 Dimensional Infrared Correlation Analysis
Authors: Norhidayu Muhamad Zain
Abstract:
Gelatin, a purified protein derived mostly from porcine and bovine sources, is used widely in food manufacturing, pharmaceutical, and cosmetic industries. However, the presence of any porcine-related products are strictly forbidden for Muslim and Jewish consumption. Therefore, analytical methods offering reliable results to differentiate the sources of gelatin are needed. The aim of this study was to differentiate the sources of gelatin (porcine and tilapia fish) using Fourier transform infrared- attenuated total reflection (FTIR-ATR) combined with two dimensional infrared (2DIR) correlation analysis. Porcine gelatin (PG) and tilapia fish gelatin (FG) samples were diluted in distilled water at concentrations ranged from 4-20% (w/v). The samples were then analysed using FTIR-ATR and 2DIR correlation software. The results showed a significant difference in the pattern map of synchronous spectra at the region of 1000 cm⁻¹ to 1100 cm⁻¹ between PG and FG samples. The auto peak at 1080 cm⁻¹ that attributed to C-O functional group was observed at high intensity in PG samples compared to FG samples. Meanwhile, two auto peaks (1080 cm⁻¹ and 1030 cm⁻¹) at lower intensity were identified in FG samples. In addition, using 2D correlation analysis, the original broad water OH bands in 1D IR spectra can be effectively differentiated into six auto peaks located at 3630, 3340, 3230, 3065, 2950 and 2885 cm⁻¹ for PG samples and five auto peaks at 3630, 3330, 3230, 3060 and 2940 cm⁻¹ for FG samples. Based on the rule proposed by Noda, the sequence of the spectral changes in PG samples is as following: NH₃⁺ amino acid > CH₂ and CH₃ aliphatic > OH stretch > carboxylic acid OH stretch > NH in secondary amide > NH in primary amide. In contrast, the sequence was totally in the opposite direction for FG samples and thus both samples provide different 2D correlation spectra ranged from 2800 cm-1 to 3700 cm⁻¹. This method may provide a rapid determination of gelatin source for application in food, pharmaceutical, and cosmetic products.Keywords: 2 dimensional infrared (2DIR) correlation analysis, Fourier transform infrared- attenuated total reflection (FTIR-ATR), porcine gelatin, tilapia fish gelatin
Procedia PDF Downloads 2505274 Inflammatory Cytokine (Interleukin-8): A Diagnostic Marker in Leukemia
Authors: Sandeep Pandey, Nimra Habib, Ranjana Singh, Abbas Ali Mahdi
Abstract:
Leukemia is a malignancy of blood that mainly affects children and young adults; while advancement in the early diagnosis will have the potential to improve the outcome of diseases. A wide range of disease including leukemia shows inflammatory signals in their pathogenesis. In a pilot study conducted in our laboratory, 52 people were screened, of which 26 had leukemia and 26 were free from any kind of malignancy. We performed the estimation of the inflammatory cytokine Interleukin-8 and it was found significantly raised in all the leukemia patients concerning healthy volunteers who participated in the study. Flow cytometry had been performed for the confirmation of leukemia and further genomic, and proteomic, analyses of the sample revealed that IL-8 levels showed a positive correlation in patients with leukemia. The results had shown constitutive secretion of interleukin-8 by leukemia cells. So, our finding demonstrated that IL-8 is considered to have a role in the pathogenesis of leukemia, and quantification of IL-8 levels in leukemia conditions might be more useful and feasible in the clinical setting for the prediction of drug responses where it may represent a putative target for innovative diagnostic toward effective therapeutic approaches. However, further research explorations in this area are needed that include a greater number of patients with all different forms of leukemia, and estimating their IL-8 levels may hold the key for the additional predictive values on the recurrence of leukemia and its prognosis.Keywords: T-ALL, IL-8, leukemia pathogenesis, cancer therapeutics
Procedia PDF Downloads 725273 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method
Procedia PDF Downloads 3415272 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 3495271 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2375270 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer
Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski
Abstract:
Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.Keywords: colorectal carcinoma, stem cells, CD133+, CD44+
Procedia PDF Downloads 1505269 An Image Stitching Approach for Scoliosis Analysis
Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris
Abstract:
Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.Keywords: image stitching, MACE filter, panorama image, scoliosis
Procedia PDF Downloads 4585268 Correlation Studies and Heritability Estimates among Onion (Allium Cepa L.) Cultivars of North Western Nigeria
Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche
Abstract:
Onion (Allium cepa var. cepa L.), is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. Heritability defined as the proportion of the observed total variability that is genetic, and its estimates from variance components give more useful information of genotypic variation from the total phenotypic differences and environmental effects on the individuals or families. It therefore guide the breeder with respect to the ease with which selection of traits can be carried out. Heritability estimates guide the breeder with respect to ease of selection of traits while correlations suggest how selection among characters can be practiced. Correlations explain relationship between characters and suggest how selection among characters can be practiced in breeding programmes. Highly significant correlations have been reported, between yield, maturity, rings/bulb and storage loss in onions. Similarly significant positive correlation exists between total bulb yield and plant height, leaf number/plant, bulb diameter and bulb yield/plant. Moderate positive correlations have been observed between maturity date and yield, dry matter content was highly correlated with soluble solids, and higher correlations were also observed between storage loss and soluble solids. The objective of the study is to determine heritability estimates and correlations for characters among onion cultivars of North Western Nigeria. This is envisaged will assist in the breeding of superior onion cultivars within the zone. Thirteen onion cultivars were collected during an expedition covering north western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. Combined analysis of the results revealed fresh bulb yield is highly significantly positively correlated with bulb height and cured bulb yield, and significant positive correlation with plant height and bulb diameter. It also recorded significant negative correlation with mean No. of leaves/plant and non significant negative correlation with bolting %. Cured bulb yield (marketable yield) had highly significant positive correlation with mean bulb weight and fresh bulb yield/ha, with significant positive correlation with bulb height. It also recorded highly significant negative correlation with No. of leaves/plant and significant negative correlation with bolting % and non significant positive correlation with plant height and non significant negative correlation with bulb diameter. High broad sense heritability estimates were recorded for plant height, fresh bulb yield, number of leaves/plant, bolting % and cured bulb yield. Medium to low broad sense heritabilities were also observed for mean bulb weight, plant height and bulb diameter.Keywords: correlation, heritability, onions, North Western Nigeria
Procedia PDF Downloads 4025267 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance
Procedia PDF Downloads 2055266 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 2875265 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 4875264 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method
Authors: Karuna Tuchinda, Sasithon Bland
Abstract:
This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction
Procedia PDF Downloads 3735263 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity
Authors: Sayed Abdallah Mohamed Dahy
Abstract:
Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt
Procedia PDF Downloads 3805262 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus
Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din
Abstract:
Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA
Procedia PDF Downloads 1555261 Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players
Authors: Svetlana Missina, Anatoliy Shipilov, Alexandr Vavaev
Abstract:
The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football.Keywords: agility, female football players, sprint performance, vertical jump height
Procedia PDF Downloads 4695260 The Readiness of English Communication Skills for Travel Agents to Enter the ASEAN Economic Community
Authors: Bavornluck Kuosuwan
Abstract:
The purpose of this research was to study the level of readiness of English communication skills for travel agents in the Silom road area of Bangkok in order to enter the ASEAN economic community in the year 2015. The multi-stage sampling method was utilized with 474 respondents from 79 travel agencies. An English Questionnaire was used to collect the data. Descriptive statistics included percentage, average, standard deviation and Pearson’s r coefficient. The findings revealed that the majority of respondents were not well prepared in terms of ASEAN knowledge including laws and regulations. The majority of respondents had not been well informed about the changes that will come with the coming of ASEAN economic community. Moreover, the level of English communication for most travel agents was between the poor and intermediate level and therefore improvement is needed, especially the speaking and listening skill. In other words, the majority of respondents needed more training in terms of communications skills. The correlation between the working environment and attitude of the staff was very positive. Moreover, the correlation between the background of staff and attitude of staff was also very positive and most of demographic factors had a positive correlation with attitude of staff, except gender.Keywords: ASEAN, communication skills, travel agents, media engineering
Procedia PDF Downloads 2525259 Relationship between Strengths/Weaknesses of Studying and Subjective Well-Being among Japanese Working Adults
Authors: Katsumi Mera
Abstract:
The purpose of this study was to clarify the relationship between strengths/weaknesses on studying and subjective well-being among Japanese working adults. We conducted an online questionnaire survey of Japanese working adults (aged 20-69) and obtained 1,063 valid responses. Subjective well-being was evaluated using the Cantril Self-Anchoring Striving Scale, the method used in the World Happiness Survey, in which the highest possible life is set at 10, and the lowest possible life is set at 0. The mean subjective well-being of all 1,063 respondents was 5.87, which is a very similar value that was obtained in the Japanese World Happiness Survey in 2023. First, we investigated the respondents' strengths/weaknesses in studying and their subjective well-being. The results showed that the subjective well-being of the group who answered that they were good at studying (6.62) was significantly higher than that of the group who answered that they were poor at studying (5.15). Next, we investigated the subjective well-being of students who answered that they were good at Japanese, Math, English, Social studies, and Science, the major subjects in Japan, and found that the subjective well-being of the group that answered that they were good at these subjects was higher than that of the group that answered that they were poor at these subjects. When the correlation between the score of "strengths/weaknesses on studying" and the score of "subjective well-being" was examined, those who answered that they were good at studying had higher subjective well-being (correlation coefficient r = 0.26, p < 0.001). The correlation between the subjective well-being score and the score of "strengths/weaknesses on studying each subject” was examined. Among the subjects, the subjective well-being score was the highest for those who answered that they were good at English (correlation coefficient r = 0.17, p < 0.001). These results indicate a relationship between strengths/weaknesses on studying and subjective well-being among workers in Japan. These findings may provide an important basis for considering what kind of education should be focused on in order to nurture working adults with high levels of well-being.Keywords: subject well-being, strengths/weaknesses, studying, Japanese working adults
Procedia PDF Downloads 785258 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes
Authors: Shreemoyee Sarkar, Vikhyat Chadha
Abstract:
In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties
Procedia PDF Downloads 1525257 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.Keywords: disaster management, real-time demand, reinforcement learning, relief demand
Procedia PDF Downloads 3165256 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 755255 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 1025254 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2675253 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 2905252 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1305251 Analysis of Ancient Bone DNA Samples From Excavations at St Peter’s Burial Ground, Blackburn
Authors: Shakhawan K. Mawlood, Catriona Pickard, Benjamin Pickard
Abstract:
In summer 2015 the remains of 800 children are among 1,967 bodies were exhumed by archaeologists at St Peter's Burial Ground in Blackburn, Lancashire. One hundred samples from these 19th century ancient bones were selected for DNA analysis. These comprised samples biased for those which prior osteological evidence indicated a potential for microbial infection by Mycobacterium tuberculosis (causing tuberculosis, TB) or Treponema pallidum (causing Syphilis) species, as well a random selection of other bones for which visual inspection suggested good preservation (and, therefore, likely DNA retrieval).They were subject to polymerase chain reaction (PCR) assays aimed at detecting traces of DNA from infecting mycobacteria, with the purpose both of confirming the palaeopathological diagnosis of tuberculosis and determining in individual cases whether disease and death was due to M. tuberculosis or other reasons. Our secondary goal was to determine sex determination and age prediction. The results demonstrated that extraction of vast majority ancient bones DNA samples succeeded.Keywords: ancient bone, DNA, tuberculosis, age prediction
Procedia PDF Downloads 1035250 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases
Authors: S. Naveen, V. Sivasubramanian
Abstract:
A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release
Procedia PDF Downloads 4395249 Correlation Between HIV/AIDS Stage With Oral Health, Dentition, and Periodontal Status
Authors: Eriselda Simoni, Leonard Simoni, Endri Paparisto, Laureta Flaga, Silvana Bara, Edit Xhajanka, Arjan Harxhi
Abstract:
Background: Some pathologies are encountered more often in HIV/ AIDS, such as those with bacterial, fungal, viral, and neoplastic causes, but what has been more noticeable in recent years is the increased and more aggressive manifestation of periodontal disease and oral caries. Our purpose is to investigate the correlation between the HIV/AIDS stage and CD4 level with oral health, dentition, and periodontal status. Materials and Methods: We conducted a prospective observational study that included 35 patients newly diagnosed with HIV/AIDS and underwent an oral examination at the University Dental Clinic in Tirana, Albania, in the period April - July 2024. This study evaluated the basic demographic, laboratory characteristics, oral hygiene, and the presence of oral lesions. The dentition status was assessed with the values DT (decay teeth), FT (filled teeth), and MT (missing teeth) presented as DMFT. The periodontal status was evaluated through a periodontal probe measuring CPI (community periodontal index) and LOA (loss of attachment) as recommended by the WHO Oral Health Assessment Form 2013. The Pearson Correlation Coefficient (r) was used to evaluate the relationship between levels of CD4+ and DMF, CD4+ and CPI, and CD4+ and LOA. The P value ≤ 0.05 was considered statistically significant. Results: 80% of patients included were males with a mean age of 35.8 years. 8.6% of patients were categorized as HIV stage I, 28.6% as stage II, and 62.8% as HIV stage III/AIDS. The mean level value of CD4+ was 266.2 cells/mm3 and the rapport CD4+/ WBC (White Blood Cells) was 15.7%. Most patients (57.2%) used toothbrushes less than 1 time a day. An important negative correlation was found between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a higher DMFT, CPI, and LOA, respectively coefficient (r) for CD4/DMFT = -0.52, p =0.01, (r) for CD4/CPI= - 0.38, p=0.024 and (r) for CD4/LOA= - 0.37, p=0.029. Conclusions: In our study, it was documented that patients with HIV/AIDS had worse oral health, an important negative correlation between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a worse dentition status (higher DMFT), and poor periodontal health (higher CPI and LOA). The monitoring and treatment of oral pathologies can be important in early HIV/AIDS diagnoses and treatment.Keywords: HIV/AIDS, oral health, dentition, periodontal
Procedia PDF Downloads 30