Search results for: computing curricula
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1241

Search results for: computing curricula

581 A Conceptual Framework of Digital Twin for Homecare

Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg

Abstract:

This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.

Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence

Procedia PDF Downloads 71
580 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 129
579 Managers’ Mobile Information Behavior in an Openness Paradigm Era

Authors: Abd Latif Abdul Rahman, Zuraidah Arif, Muhammad Faizal Iylia, Mohd Ghazali, Asmadi Mohammed Ghazali

Abstract:

Mobile information is a significant access point for human information activities. Theories and models of human information behavior have developed over several decades but have not yet considered the role of the user’s computing device in digital information interactions. This paper reviews the literature that leads to developing a conceptual framework of a study on the managers mobile information behavior. Based on the literature review, dimensions of mobile information behavior are identified, namely, dimension information needs, dimension information access, information retrieval and dimension of information use. The study is significant to understand the nature of librarians’ behavior in searching, retrieving and using information via the mobile device. Secondly, the study would provide suggestions about various kinds of mobile applications which organization can provide for their staff to improve their services.

Keywords: mobile information behavior, information behavior, mobile information, mobile devices

Procedia PDF Downloads 349
578 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 287
577 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 141
576 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking

Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye

Abstract:

The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.

Keywords: algorithm, cryptography, cryptosystem, network

Procedia PDF Downloads 349
575 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment

Authors: Anju Bala, Inderveer Chana

Abstract:

Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.

Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation

Procedia PDF Downloads 518
574 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 306
573 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 51
572 Nursing Education in Estonia During the Years of Occupation: Paternalism and Ideology

Authors: Merle Talvik, Taimi Tulva, Kristi Puusepp, Ülle Ernits

Abstract:

Background data. In 1940–1941 and 1945–1991 Estonia was occupied by Soviet Union. Paternalism was a common principle in Soviet social policy, including health care. The Soviet government, not the individuals themselves, decided on achieving a person’s quality of life. With the help of Soviet ideology, the work culture of nurses was constructed and the education system was also reshaped according to the ideology. The “new period of awakening” was initiated under Gorbachev’s perestroika and glasnost (1985–1991), leading to democratization. Aim. The qualitative study aimed to analyze nursing education in Soviet Estonia in the conditions of paternalistic orientation and ideological pressure. Method. The research was conducted in 2021 and 2023. Senior nurses (aged 69–87) who had worked for at least 20 years during the Soviet era were surveyed. Thematic interviews were conducted in written form and orally (13 interviewees), followed by a focus group interview (8 interviewees). A thematic content analysis was performed. Results. Nursing is part of society’s culture and in this sense, in - terviews with nurses provide us with critical information about the functioning of society and cultural identity at a given time. During the Soviet era the training of nurses occured within vocational training institutions. The curricula underwent a shift towards a Soviet-oriented approach. A significant portion of lessons were dedicated to imparting knowledge on the principles and tenets of Communist-Marxist ideology. Therefore, practical subjects and nursing theory were frequently allocated limited space. A paternalistic orientation prevailed in health care: just as the state regulated how to cure, spread hygiene, and healthy lifestyles propaganda, training was also determined by the management of the institution, thereby limiting the person´s autonomy to decide what kind of training was needed. The research is of significant value in the context of the history of nursing, as it helps to understand the difficulties and complexity of the development of nursing on the timeline. The Soviet era still affects Estonian society today and will continue to do so in the future. The same type of developments occurred in other post-Soviet countries.

Keywords: Estonian SSR, nursing education, paternalism, senior nurse, Soviet ideology

Procedia PDF Downloads 67
571 Exploring the Use of Universal Design for Learning to Support The Deaf Learners in Lesotho Secondary Schools: English Teachers Voice

Authors: Ntloyalefu Justinah, Fumane Khanare

Abstract:

English learning has been found as one of the prevalent areas of difficulty for Deaf learners. However, studies conducted indicated that this challenge experienced by Deaf learners is an upsetting concern globally as is blamed and hampered by various reasons such as the way English is taught at schools, lack of teachers ' skills and knowledge, therefore, impact negatively on their academic performance. Despite any difficulty in English learning, this language is considered nowadays as the key tool to an educational and occupational career especially in Lesotho. This paper, therefore, intends to contribute to the existing literature by providing the views of Lesotho English teachers, which focuses on how effectively Universal design for learning can be implemented to enhance the academic performance of Deaf learners in context of the English language classroom. The purpose of this study sought to explore the use of universal design for learning (UDL) to support Deaf learners in Lesotho Secondary schools. The present study is informed by interpretative paradigm and situated within a qualitative research approach. Ten participating English teachers from two inclusive schools were purposefully selected and telephonically interviewed to generate data for this study. The data were thematically analysed. The findings indicated that even though UDL is identified as highly proficient and promotes flexibility in teaching methods teachers reflect limited knowledge of the UDL approach. The findings further showed that UDL ensures education for all learners, including marginalised groups, such as learners with disabilities through different teaching strategies. This means that the findings signify the effective use of UDL for the better performance of the English language by Deaf learners (DLs). This aligns with literature that shows mobilizing English teachers as assets help DLs to be engaged and have control in their communities by defining and solving problems using their resources and connections to other networks for asset and exchange. The study, therefore, concludes that teachers acknowledge that even though they assume to be knowledgeable about the definition of UDL, they have a limited practice of the approach, thus they need to be equipped with some techniques and skills to apply for supporting the performance of DLs by using UDL approach in their English teaching. The researchers recommend the awareness of UDL principles by the ministry of Education and Training and teachers training Universities, as well as teachers training colleges, for them to include it in their curricula so that teachers could be properly trained on how to apply it in their teaching effectively

Keywords: deaf learners, Lesotho, support learning, universal design for learning

Procedia PDF Downloads 113
570 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider

Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf

Abstract:

We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach

Keywords: top tagger, multivariate, deep learning, LHC, single top

Procedia PDF Downloads 111
569 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 495
568 Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots

Authors: Nevena Jakovčević Stor, Ivan Slapničar

Abstract:

Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, eigenvalue decomposition, arrowhead matrix, high relative accuracy

Procedia PDF Downloads 418
567 Developing a Shared Understanding of Wellbeing: An Exploratory Study in Irish Primary Schools Incorporating the Voices of Teachers

Authors: Fionnuala Tynan, Margaret Nohilly

Abstract:

Wellbeing in not only a national priority in Ireland but in the international context. A review of the literature highlights the consistent efforts of researchers to define the concept of wellbeing. This study sought to explore the understating of Wellbeing in Irish primary schools. National Wellbeing Guidelines in the Irish context frame the concept of wellbeing through a mental health paradigm, which is but one aspect of wellbeing. This exploratory research sought the views of Irish primary-school teachers on their understanding of the concept of wellbeing and the practical application of strategies to promote wellbeing both in the classroom and across the school. Teacher participants from four counties in the West of Ireland were invited to participate in focus group discussion and workshops through the Education Centre Network. The purpose of this process was twofold; firstly to explore teachers’ understanding of wellbeing in the primary school context and, secondly, for teachers to be co-creators in the development of practical strategies for classroom and whole school implementation. The voice of the teacher participants was central to the research design. The findings of this study indicate that the definition of wellbeing in the Irish context is too abstract a definition for teachers and the focus on mental health dominates the discourse in relation to wellbeing. Few teachers felt that they were addressing wellbeing adequately in their classrooms and across the school. The findings from the focus groups highlighted that while teachers are incorporating a range of wellbeing strategies including mindfulness and positive psychology, there is a clear disconnect between the national definition and the implementation of national curricula which causes them concern. The teacher participants requested further practical strategies to promote wellbeing at whole school and classroom level within the framework of the Irish Primary School Curriculum and enable them to become professionally confident in developing a culture of wellbeing. In conclusion, considering wellbeing is a national priority in Ireland, this research promoted the timely discussion the wellbeing guidelines and the development of a conceptual framework to define wellbeing in concrete terms for practitioners. The centrality of teacher voices ensured the strategies proposed by this research is both practical and effective. The findings of this research have prompted the development of a national resource which will support the implementation of wellbeing in the primary school at both national and international level.

Keywords: primary education, shared understanding, teacher voice, wellbeing

Procedia PDF Downloads 457
566 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation

Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal

Abstract:

We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).

Keywords: authentication, edge computing, industrial IoT, post-quantum resistance

Procedia PDF Downloads 197
565 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms

Authors: Yaping Zhao, Yimin Zhang

Abstract:

In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.

Keywords: random vibration, cantilever beam, mean square response, white noise

Procedia PDF Downloads 384
564 Hardware for Genetic Algorithm

Authors: Fariborz Ahmadi, Reza Tati

Abstract:

Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.

Keywords: hardware, genetic algorithm, computer science, engineering

Procedia PDF Downloads 507
563 Deploying a Platform as a Service Cloud Solution to Support Student Learning

Authors: Jiangping Wang

Abstract:

This presentation describes the design and implementation of PaaS (platform as a service) cloud-based labs that are used in database-related courses to teach students practical skills. Traditionally, all labs are implemented in a desktop-based environment where students have to install heavy client software to access database servers. In order to release students from that burden, we have successfully deployed the cloud-based solution to support database-related courses, from which students and teachers can practice and learn database topics in various database courses via cloud access. With its development environment, execution runtime, web server, database server, and collaboration capability, it offers a shared pool of configurable computing resources and comprehensive environment that supports students’ needs without the complexity of maintaining the infrastructure.

Keywords: PaaS, database environment, e-learning, web server

Procedia PDF Downloads 268
562 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 336
561 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 462
560 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 108
559 Italian Sign Language and Deafness in a North-Italian Border Region: Results of Research on the Linguistic Needs of Teachers and Students

Authors: Maria Tagarelli De Monte

Abstract:

In 2021, the passage of the law recognizing Italian Sign Language (LIS) as the language of the Italian deaf minority was the input for including this visual-gestural language in the curricula of interpreters and translators choosing the academic setting for their training. Yet, a gap remains concerning LIS education of teachers and communication assistants as referring figures for people who are deaf or hard of hearing in mainstream education. As well documented in the related scientific literature, deaf children often experience severe difficulties with the languages spoken in the country where they grow up, manifesting in all levels of literacy competence. In the research introduced here, the experience of deaf students (and their teachers) attending schools is explored in areas that are characterized by strong native bilingualism, such as Friuli-Venezia Giulia (FVG), facing Italian Northeast borders. This region is peculiar as the native population may be bilingual Italian and Friulian (50% of the local population), German, and/or Slovenian. The research involved all schools of all levels in Friuli to understand the relationship between the language skills expressed by teachers and those shown by deaf learners with a background in sign language. In addition to collecting specific information on the degree of preparation of teachers in deaf-related matters and LIS, the research has allowed to highlight the role, often poorly considered, covered by the communication assistants who work alongside deaf students. On several occasions, teachers and assistants were unanimous in affirming the importance of mutual collaboration and adequate consideration of the educational-rehabilitative history of the deaf child and her family. The research was based on a mixed method of structured questionnaires and semi-structured interviews with the referring teachers. As a result, a varied and complex framework emerged, showing an asymmetry in preparing personnel dedicated to the deaf learner. Considering how Italian education has long invested in creating an inclusive and accessible school system (i.e. with the "Ten Theses for Democratic Language Education"), a constructive analysis will complete the discussion in an attempt to understand how linguistic (and modal) differences can become levers of inclusion.

Keywords: FVG, LIS, linguistic needs, deafness, teacher education, bilingual bimodal children, communication assistants, inclusion model

Procedia PDF Downloads 47
558 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 184
557 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education

Authors: Felix Golla

Abstract:

In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.

Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies

Procedia PDF Downloads 69
556 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
555 Re-Evaluating the Hegemony of English Language in West Africa: A Meta-Analysis Review of the Research, 2003-2018

Authors: Oris Tom-Lawyer, Michael Thomas

Abstract:

This paper seeks to analyse the hegemony of the English language in Western Africa through the lens of educational policies and the socio-economic functions of the language. It is based on the premise that there is a positive link between the English language and development contexts. The study aims to fill a gap in the research literature by examining the usefulness of hegemony as a concept to explain the role of English language in the region, thus countering the negative connotations that often accompany it. The study identified four main research questions: i. What are the socio-economic functions of English in Francophone/lusophone countries? ii. What factors promote the hegemony of English in anglophone countries? iii. To what extent is the hegemony of English in West Africa? iv. What are the implications of the non-hegemony of English in Western Africa? Based on a meta-analysis of the research literature between 2003 and 2018, the findings of the study revealed that in francophone/lusophone countries, English functions in the following socio-economic domains; they are peace keeping missions, regional organisations, commercial and industrial sectors, as an unofficial international language and as a foreign language. The factors that promote linguistic hegemony of English in anglophone countries are English as an official language, a medium of instruction, lingua franca, cultural language, language of politics, language of commerce, channel of development and English for media and entertainment. In addition, the extent of the hegemony of English in West Africa can be viewed from the factors that contribute to the non-hegemony of English in the region; they are French language, Portuguese language, the French culture, neo-colonialism, level of poverty, and economic ties of French to its former colonies. Finally, the implications of the non-hegemony of English language in West Africa are industrial backwardness, poverty rate, lack of social mobility, drop out of school rate, growing interest in English, access to limited internet information and lack of extensive career opportunities. The paper concludes that the hegemony of English has resulted in the development of anglophone countries in Western Africa, while in the francophone/lusophone regions of the continent, industrial backwardness and low literacy rates have been consequences of English language marginalisation. In conclusion, the paper makes several recommendations, including the need for the early introduction of English into French curricula as part of a potential solution.

Keywords: developmental tool, English language, linguistic hegemony, West Africa

Procedia PDF Downloads 141
554 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 280
553 Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing

Authors: H. Samadiyeh, R. Khajavi

Abstract:

A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples.

Keywords: Finite Difference Method, Graphics Processing Unit (GPU), Message Passing Interface (MPI), Modal, Wave propagation

Procedia PDF Downloads 296
552 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 504