Search results for: Twitter data clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25464

Search results for: Twitter data clustering

24804 The Various Legal Dimensions of Genomic Data

Authors: Amy Gooden

Abstract:

When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.

Keywords: artificial intelligence, data, law, genomics, rights

Procedia PDF Downloads 136
24803 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)

Procedia PDF Downloads 235
24802 A Review Paper on Data Mining and Genetic Algorithm

Authors: Sikander Singh Cheema, Jasmeen Kaur

Abstract:

In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.

Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining

Procedia PDF Downloads 589
24801 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 380
24800 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring

Authors: Seung-Lock Seo

Abstract:

This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.

Keywords: data mining, process data, monitoring, safety, industrial processes

Procedia PDF Downloads 395
24799 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 97
24798 A Survey of Semantic Integration Approaches in Bioinformatics

Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir

Abstract:

Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.

Keywords: biological ontology, linked data, semantic data integration, semantic web

Procedia PDF Downloads 447
24797 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 128
24796 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 79
24795 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name

Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing

Abstract:

Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.

Keywords: NDN, order-preserving encryption, fuzzy search, privacy

Procedia PDF Downloads 483
24794 Investigating Spatial Disparities in Health Status and Access to Health-Related Interventions among Tribals in Jharkhand

Authors: Parul Suraia, Harshit Sosan Lakra

Abstract:

Indigenous communities represent some of the most marginalized populations globally, with India labeled as tribals, experiencing particularly pronounced marginalization and a concerning decline in their numbers. These communities often inhabit geographically challenging regions characterized by low population densities, posing significant challenges to providing essential infrastructure services. Jharkhand, a Schedule 5 state, is infamous for its low-level health status due to disparities in access to health care. The primary objective of this study is to investigate the spatial inequalities in healthcare accessibility among tribal populations within the state and pinpoint critical areas requiring immediate attention. Health indicators were selected based on the tribal perspective and association of Sustainable Goal 3 (Good Health and Wellbeing) with other SDGs. Focused group discussions in which tribal people and tribal experts were done in order to finalize the indicators. Employing Principal Component Analysis, two essential indices were constructed: the Tribal Health Index (THI) and the Tribal Health Intervention Index (THII). Index values were calculated based on the district-wise secondary data for Jharkhand. The bivariate spatial association technique, Moran’s I was used to assess the spatial pattern of the variables to determine if there is any clustering (positive spatial autocorrelation) or dispersion (negative spatial autocorrelation) of values across Jharkhand. The results helped in facilitating targeting policy interventions in deprived areas of Jharkhand.

Keywords: tribal health, health spatial disparities, health status, Jharkhand

Procedia PDF Downloads 95
24793 Analyzing Social Media Discourses of Domestic Violence in Promoting Awareness and Support Seeking: An Exploratory Study

Authors: Sudha Subramani, Hua Wang

Abstract:

Domestic Violence (DV) against women is now recognized to be a serious and widespread problem worldwide. There is a growing concern that violence against women has a global public health impact, as well as a violation of human rights. From the existing statistical surveys, it is revealed that there exists a strong relationship between DV and health issues of women like bruising, lacerations, depression, anxiety, flashbacks, sleep disturbances, hyper-arousal, emotional distress, sexually transmitted diseases and so on. This social problem is still considered as behind the closed doors issue and stigmatized topic. Women conceal their sufferings from family and friends, as they experience a lack of trust in others, feelings of shame and embarrassment among the society. Hence, women survivors of DV experience some barriers in seeking the support of specialized services such as health care access, crisis support, and legal guidance. Fortunately, with the popularity of social media like Facebook and Twitter, people share their opinions and emotional feelings to seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among the public. Considering the DV, social media plays a predominant role in creating the awareness and promoting the support services to the public, as we live in the golden era of social media. The various professional people like the public health researchers, clinicians, psychologists, social workers, national family health organizations, lawyers, and victims or their family and friends share the unprecedentedly valuable information (personal opinions and experiences) in a single platform to improve the social welfare of the community. Though each tweet or post contains a less informational value, the consolidation of millions of messages can generate actionable knowledge and provide valuable insights about the public opinion in general. Hence, this paper reports on an exploratory analysis of the effectiveness of social media for unobtrusive assessment of attitudes and awareness towards DV. In this paper, mixed methods such as qualitative analysis and text mining approaches are used to understand the social media disclosures of DV through the lenses of opinion sharing, anonymity, and support seeking. The results of this study could be helpful to avoid the cost of wide scale surveys, while still maintaining appropriate research conditions is to leverage the abundance of data publicly available on the web. Also, this analysis with data enrichment and consolidation would be useful in assisting advocacy and national family health organizations to provide information about resources and support, raise awareness and counter common stigmatizing attitudes about DV.

Keywords: domestic violence, social media, social stigma and support, women health

Procedia PDF Downloads 289
24792 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
24791 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments

Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo

Abstract:

Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.

Keywords: data disorders, quality, healthcare, treatment

Procedia PDF Downloads 431
24790 Disclosure on Adherence of the King Code's Audit Committee Guidance: Cluster Analyses to Determine Strengths and Weaknesses

Authors: Philna Coetzee, Clara Msiza

Abstract:

In modern society, audit committees are seen as the custodians of accountability and the conscience of management and the board. But who holds the audit committee accountable for their actions or non-actions and how do we know what they are supposed to be doing and what they are doing? The purpose of this article is to provide greater insight into the latter part of this problem, namely, determine what best practises for audit committees and the disclosure of what is the realities are. In countries where governance is well established, the roles and responsibilities of the audit committee are mostly clearly guided by legislation and/or guidance documents, with countries increasingly providing guidance on this topic. With high cost involved to adhere to governance guidelines, the public (for public organisations) and shareholders (for private organisations) expect to see the value of their ‘investment’. For audit committees, the dividends on the investment should reflect in less fraudulent activities, less corruption, higher efficiency and effectiveness, improved social and environmental impact, and increased profits, to name a few. If this is not the case (which is reflected in the number of fraudulent activities in both the private and the public sector), stakeholders have the right to ask: where was the audit committee? Therefore, the objective of this article is to contribute to the body of knowledge by comparing the adherence of audit committee to best practices guidelines as stipulated in the King Report across public listed companies, national and provincial government departments, state-owned enterprises and local municipalities. After constructs were formed, based on the literature, factor analyses were conducted to reduce the number of variables in each construct. Thereafter, cluster analyses, which is an explorative analysis technique that classifies a set of objects in such a way that objects that are more similar are grouped into the same group, were conducted. The SPSS TwoStep Clustering Component was used, being capable of handling both continuous and categorical variables. In the first step, a pre-clustering procedure clusters the objects into small sub-clusters, after which it clusters these sub-clusters into the desired number of clusters. The cluster analyses were conducted for each construct and the measure, namely the audit opinion as listed in the external audit report, were included. Analysing 228 organisations' information, the results indicate that there is a clear distinction between the four spheres of business that has been included in the analyses, indicating certain strengths and certain weaknesses within each sphere. The results may provide the overseers of audit committees’ insight into where a specific sector’s strengths and weaknesses lie. Audit committee chairs will be able to improve the areas where their audit committee is lacking behind. The strengthening of audit committees should result in an improvement of the accountability of boards, leading to less fraud and corruption.

Keywords: audit committee disclosure, cluster analyses, governance best practices, strengths and weaknesses

Procedia PDF Downloads 166
24789 RNA-Seq Based Transcriptomic Analysis of Wheat Cultivars for Unveiling of Genomic Variations and Isolation of Drought Tolerant Genes for Genome Editing

Authors: Ghulam Muhammad Ali

Abstract:

Unveiling of genes involved in drought and root architecture using transcriptomic analyses remained fragmented for further improvement of wheat through genome editing. The purpose of this research endeavor was to unveil the variations in different genes implicated in drought tolerance and root architecture in wheat through RNA-seq data analysis. In this study seedlings of 8 days old, 6 cultivars of wheat namely, Batis, Blue Silver, Local White, UZ888, Chakwal 50 and Synthetic wheat S22 were subjected to transcriptomic analysis for root and shoot genes. Total of 12 RNA samples was sequenced by Illumina. Using updated wheat transcripts from Ensembl and IWGC references with 54,175 gene models, we found that 49,621 out of 54,175 (91.5%) genes are expressed at an RPKM of 0.1 or more (in at least 1 sample). The number of genes expressed was higher in Local White than Batis. Differentially expressed genes (DEG) were higher in Chakwal 50. Expression-based clustering indicated conserved function of DRO1and RPK1 between Arabidopsis and wheat. Dendrogram showed that Local White is sister to Chakwal 50 while Batis is closely related to Blue Silver. This study flaunts transcriptomic sequence variations in different cultivars that showed mutations in genes associated with drought that may directly contribute to drought tolerance. DRO1 and RPK1 genes were fetched/isolated for genome editing. These genes are being edited in wheat through CRISPR-Cas9 for yield enhancement.

Keywords: transcriptomic, wheat, genome editing, drought, CRISPR-Cas9, yield enhancement

Procedia PDF Downloads 145
24788 Molecular Comparison of HEV Isolates from Sewage & Humans at Western India

Authors: Nidhi S. Chandra, Veena Agrawal, Debprasad Chattopadhyay

Abstract:

Background: Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in developing countries. It spreads feco orally mainly due to contamination of drinking water by sewage. There is limited data on the genotypic comparison of HEV isolates from sewage water and humans. The aim of this study was to identify genotype and conduct phylogenetic analysis of HEV isolates from sewage water and humans. Materials and Methods: 14 sewage water and 60 serum samples from acute sporadic hepatitis E cases (negative for hepatitis A, B, C) were tested for HEV-RNA by nested polymerase chain reaction (RTnPCR) using primers designed with in RdRp (RNA dependent RNA polymerase) region of open reading frame-1 (ORF-1). Sequencing was done by ABI prism 310. The sequences (343 nucleotides) were compared with each other and were aligned with previously reported HEV sequences obtained from GeneBank, using Clustal W software. A Phylogenetic tree was constructed by using PHYLIP version 3.67 software. Results: HEV-RNA was detected in 49/ 60 (81.67%) serum and 5/14 (35.71%) sewage samples. The sequences obtained from 17 serums and 2 sewage specimens belonged to genotype I with 85% similarity and clustering with previously reported human HEV sequences from India. HEV isolates from human and sewage in North West India are genetically closely related to each other. Conclusion: These finding suggest that sewage acts as reservoir of HEV. Therefore it is important that measures are taken for proper waste disposal and treatment of drinking water to prevent outbreaks and epidemics due to HEV.

Keywords: hepatitis E virus, nested polymerase chain reaction, open reading frame-1, nucleotidies

Procedia PDF Downloads 375
24787 The Role of Social Media on Political Behaviour in Malaysia

Authors: Ismail Sualman, Mohd Khairuddin Othman

Abstract:

General Election has been the backbone of democracy that permits people to choose their representatives as they deem fit. The support preferences of the voter differ from one to another, particularly in a plural society like Malaysia. The turning up of high numbers of young voters during the Malaysia 14th General Election has been said to have been caused by social media including Facebook, Twitter, WhatsApp, Instagram, YouTube and Telegram, WeChat and SMS/MMs. It has been observed that, besides using social media as an interaction tool among social friends, it is also an important source of information to know about issues, politics and politicians. This paper exhibits the role of social media in providing political information to young voters, before an election and during the election campaign. This study examines how this information is being translated into election support. A total of 799 Malay young respondents in Selangor have been surveyed and interviewed. This study revealed that social media has become the source of political information among Malay young voters. This research suggested that social media had a significant effect on the support during the election. Social media plays an important role in carrying information such as current issues, voting trends, candidate imagery and matters that may influence the view of young voters. The information obtained from social media has been translated into a voting decision.

Keywords: social media, political behaviour, voters’ choice, election.

Procedia PDF Downloads 145
24786 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 347
24785 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 778
24784 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 375
24783 Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation

Authors: Jeoungsu Na, Jaehawn Lee, Changil Hong, Suhee Kim

Abstract:

A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions.

Keywords: cavitation, molecular collision, nozzle, vacuum, velocity increase

Procedia PDF Downloads 429
24782 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations

Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa

Abstract:

This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.

Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy

Procedia PDF Downloads 202
24781 Healthcare Data Mining Innovations

Authors: Eugenia Jilinguirian

Abstract:

In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.

Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database

Procedia PDF Downloads 64
24780 Genetic Diversity and Variation of Nigerian Pigeon (Columba livia domestica) Populations Based on the Mitochondrial Coi Gene

Authors: Foluke E. Sola-Ojo, Ibraheem A. Abubakar, Semiu F. Bello, Isiaka H. Fatima, Sule Bisola, Adesina M. Olusegun, Adeniyi C. Adeola

Abstract:

The domesticated pigeon, Columba livia domestica, has many valuable characteristics, including high nutritional value and fast growth rate. There is a lack of information on its genetic diversity in Nigeria; thus, the genetic variability in mitochondrial cytochrome oxidase subunit I (COI) sequences of 150 domestic pigeons from four different locations was examined. Three haplotypes (HT) were identified in Nigerian populations; the most common haplotype, HT1, was shared with wild and domestic pigeons from Europe, America, and Asia, while HT2 and HT3 were unique to Nigeria. The overall haplotype diversity was 0.052± 0.025, and nucleotide diversity was 0.026± 0.068 across the four investigated populations. The phylogenetic tree showed significant clustering and genetic relationship of Nigerian domestic pigeons with other global pigeons. The median-joining network showed a star-like pattern suggesting population expansion. AMOVA results indicated that genetic variations in Nigerian pigeons mainly occurred within populations (99.93%), while the Neutrality tests results suggested that the Nigerian domestic pigeons’ population experienced recent expansion. This study showed a low genetic diversity and population differentiation among Nigerian domestic pigeons consistent with a relatively conservative COI sequence with few polymorphic sites. Furthermore, the COI gene could serve as a candidate molecular marker to investigate the genetic diversity and origin of pigeon species. The current data is insufficient for further conclusions; therefore, more research evidence from multiple molecular markers is required.

Keywords: Nigeria pigeon, COI, genetic diversity, genetic variation, conservation

Procedia PDF Downloads 193
24779 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication

Authors: Anny Retnowati, Elisabeth Sundari

Abstract:

This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.

Keywords: access, health data, medical records, personal data, protection

Procedia PDF Downloads 91
24778 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises

Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto

Abstract:

The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.

Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel

Procedia PDF Downloads 355
24777 An Investigation into the Views of Gifted Children on the Effects of Computer and Information Technologies on Their Lives and Education

Authors: Ahmet Kurnaz, Eyup Yurt, Ümit Çiftci

Abstract:

In this study, too, an attempt was made to reveal the place and effects of information technologies on the lives and education of gifted children based on the views of gifted. To this end, the effects of information technologies on gifted are general skills, technology use, academic and social skills, and cooperative and personal skills were investigated. These skills were explored depending on whether or not gifted had their own computers, had internet connection at home, or how often they use the internet, average time period they spent at the computer, how often they played computer games and their use of social media. The study was conducted using the screening model with a quantitative approach. The sample of the study consisted of 129 gifted attending 5-12th classes in 12 provinces in different regions of Turkey. 64 of the participants were female while 65 were male. The research data were collected using the using computer of gifted and information technologies (UCIT) questionnaire which was developed by the researchers and given its final form after receiving expert view. As a result of the study, it was found that UCIT use improved foreign language speaking skills of gifted, enabled them to get to know and understand different cultures, and made use of computer and information technologies while they study. At the end of the study these result were obtained: Gifted have positive idea using computer and communication technology. There are differences whether using the internet about the ideas UCIT. But there are not differences whether having computer, inhabited city, grade level, having internet at home, daily and weekly internet usage durations, playing the computer and internet game, having Facebook and Twitter account about the UCIT. UCIT contribute to the development of gifted vocabulary, allows knowing and understand different cultures, developing foreign language speaking skills, gifted do not give up computer when they do their homework, improve their reading, listening, understanding and writing skills in a foreign language. Gifted children want to have transition to the use of tablets in education. They think UCIT facilitates doing their homework, contributes learning more information in a shorter time. They'd like to use computer-assisted instruction programs at courses. They think they will be more successful in the future if their computer skills are good. But gifted students prefer teacher instead of teaching with computers and they said that learning can be run from home without going to school.

Keywords: gifted, using computer, communication technology, information technologies

Procedia PDF Downloads 388
24776 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 354
24775 Effectiveness of Internet Psychological Counseling in Reducing Social Shyness Symptoms among Students of University of Tabuk

Authors: Khawla Saad Albalawi

Abstract:

The aim of this research was to explore the effectiveness of the internet counseling in reducing social shyness among the university's students. The sample consisted of 40 students and was divided into two groups: an experimental group and a control group. The social shyness scale (SSS) was administered to both groups before applying the counseling to the experimental group (as a pre-test). After that, the internet counseling was applied to the experimental group. Next, the SSS was administered to both groups (as a post-test). Finally, the SSS was administered to the experimental group (as an iterative application). Results suggest that: 1. There is a significant difference between the two groups in the post-test in all dimensions and the total score of the (SSS) in favor of the experimental group in all cases. 2. There is a significant difference between the pre- and the post-test of the experimental group in all dimensions and the total score of the (SSS) in favor of the post-test in all cases. 3. There is no significant difference between the post-test and the iterative application of the experimental group in all dimensions and the total score of the (SSS). The above results were discussed in light of previous research. Recommendations and future researches were suggested.

Keywords: internet psychological clinics, social interaction disorders, shyness, Twitter, Facebook

Procedia PDF Downloads 497