Search results for: Shipborne Mobile LiDAR System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18765

Search results for: Shipborne Mobile LiDAR System

18105 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 459
18104 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique

Authors: P. Kamphikul, P. Krachodnok, R. Wongsan

Abstract:

This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.

Keywords: gain improvement, microstrip antenna array, electromagnetic band gap, base station

Procedia PDF Downloads 311
18103 An Unusual Case of Extensive, Unilateral, Idiopathic Dental Resorption

Authors: Ceri McIntosh

Abstract:

A 25-year-old male was referred to the Maxillofacial department by his general dental practitioner with a complaint of mobile teeth. Medically he was well though he took mirtazapine for anxiety. He was found to have had previous extractions of the lower right second premolar and first molar, with grade 2 mobility of the upper right first and second molars and lower right lateral incisor. Radiographically there was significant external root resorption of these teeth, which were subsequently extracted. Over the next 18 months, the resorption continued around multiple teeth on the right side, and when the mobile teeth were removed, they showed no remaining root, including loss of coronal dentine, leaving only an enamel shell. No cause has been identified either histologically or in the patient’s blood work. A review of relevant literature will be included in this case report.

Keywords: case report, idiopathic resorption, idiopathic root resorption, external resorption

Procedia PDF Downloads 79
18102 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 126
18101 Sustainable Refrigerated Transport Engineering

Authors: A. A, F. Belmir, A. El Bouari, Y. Abboud

Abstract:

This article presents a study of the thermal performance of a new solar mobile refrigeration prototype for the preservation of perishable foods. The simulation of the refrigeration cycle and the calculation of the thermal balances made it possible to estimate its consumption and to evaluate the capacity of each photovoltaic component necessary for the production of energy. The study provides a description of the refrigerator construction and operation, including an energy balance analysis of the refrigerator performance under typical loads. The photovoltaic system requirements are also detailed.

Keywords: composite, material, photovoltaic, refrigeration, thermal

Procedia PDF Downloads 246
18100 Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries

Authors: Fatima Sohail, Faizan Iftikhar

Abstract:

This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy.

Keywords: digital finance, renewable energy, economic development, mobile subscription, fixed broadband

Procedia PDF Downloads 40
18099 eTransformation Framework for the Cognitive Systems

Authors: Ana Hol

Abstract:

Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.

Keywords: system implementations, AI supported systems, cognitive systems, eTransformation

Procedia PDF Downloads 238
18098 Path loss Signals Determination in a Selected Buildings in Kazaure

Authors: Musefiu Aderinola, F. A. Amuda

Abstract:

Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively.

Keywords: penetration loss, outdoor reception, Gionee P2, RF signal tracker, mud and block building

Procedia PDF Downloads 302
18097 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks

Authors: Neetesh Saxena, Narendra S. Chaudhari

Abstract:

Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.

Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS

Procedia PDF Downloads 417
18096 Accidents and Close Call Situations Due to Cell Phone Use While Moving, Driving, and Working

Authors: L. Korpinen, R. Pääkkönen, F. Gobba

Abstract:

Accidents and close call situations involving cell phones are nowadays possible. The objective of this study was to investigate the accidents and close call situations due to cell phone use while moving, driving, and working among Finns aged between 18 and 65. This work is part of a large cross-sectional study that was carried out on 15,000 working-age Finns. About 26% of people who had an accident, and about half of the people including close call situation with the mobile phone, answered that use of the phone influenced. In the future, it is important to take into account that the use of a mobile phone can be distracting while driving.

Keywords: blue-collar workers, accident, cell phone, close call situation

Procedia PDF Downloads 308
18095 Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control

Procedia PDF Downloads 511
18094 Effect of Information and Communication Intervention on Stable Economic Growth in Ethiopia

Authors: Medhin Haftom Hailu

Abstract:

The advancement of information technology has significantly impacted Ethiopia's economy, driving innovation, productivity, job creation, and global connectivity. This research examined the impact of contemporary information and communication technologies on Ethiopian economic progress. The study examined eight variables, including mobile, internet, and fixed-line penetration rates, and five macroeconomic control variables. The results showed a positive and strong effect of ICT on economic growth in Ethiopia, with 1% increase in mobile, internet, and fixed line services penetration indexes resulting in an 8.03, 10.05, and 30.06% increase in real GDP. The Granger causality test showed that all ICT variables Granger caused economic growth, but economic growth Granger caused mobile penetration rate only. The study suggests that coordinated ICT infrastructure development, increased telecom service accessibility, and increased competition in the telecom market are crucial for Ethiopia's economic growth. Ethiopia is attempting to establish a digital economy through massive investment in ensuring ICT quality and accessibility. Thus, the research could enhance in understanding of the economic impact of ICT expansion for successful ICT policy interventions for future research.

Keywords: economic growth, cointegration and error correction, ICT expansion, granger causality, penetration

Procedia PDF Downloads 80
18093 An Empirical Study of Critical Success Factors for the Adoption of M-Government Services in Tanzania

Authors: Fredrick Ishengoma, Leonard Mselle, Hector Mongi

Abstract:

The growing number of mobile phone subscribers in Tanzania offers the government a new channel for the delivery of information and government services to citizens, thus mobile Government (m-Government). In Tanzania, m-Government services usage is in the early stages, and factors that influence its adoption are yet to be known. This study seeks to identify and understand the critical success factors (CSFs) that influence citizens’ behavioural intention (BI) to adopt m-Government services in Tanzania. The study employed the mobile services acceptance model (MSAM) and extends it with external factors relevant in the Tanzanian context. A survey questionnaire was used to collect primary data from users of m-Government services in Dar es salaam and Dodoma cities, and 253 responses were received. Data were analyzed by IBM-SPSS AMOS 23.0 software using structural equation modeling (SEM). The findings of the study indicate that perceived usefulness, trust, perceived mobility, power distance, quality of service, awareness, perceived cost, personal initiatives, and characteristics significantly influence the BI to adopt m-Government services. However, perceived ease of use was found statistically insignificant to predict BI. Furthermore, the interplay between CSFs, discussion on theoretical and practical implications that follow from the results are presented.

Keywords: adoption, critical success factors, structural equation modeling, m-Government, MSAM, Tanzania

Procedia PDF Downloads 149
18092 Effective Validation Model and Use of Mobile-Health Apps for Elderly People

Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares

Abstract:

The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.

Keywords: model, validation, effective, healthcare, elderly people, mobile app

Procedia PDF Downloads 218
18091 Context-Aware Recommender Systems Using User's Emotional State

Authors: Hoyeon Park, Kyoung-jae Kim

Abstract:

The product recommendation is a field of research that has received much attention in the recent information overload phenomenon. The proliferation of the mobile environment and social media cannot help but affect the results of the recommendation depending on how the factors of the user's situation are reflected in the recommendation process. Recently, research has been spreading attention to the context-aware recommender system which is to reflect user's contextual information in the recommendation process. However, until now, most of the context-aware recommender system researches have been limited in that they reflect the passive context of users. It is expected that the user will be able to express his/her contextual information through his/her active behavior and the importance of the context-aware recommender system reflecting this information can be increased. The purpose of this study is to propose a context-aware recommender system that can reflect the user's emotional state as an active context information to recommendation process. The context-aware recommender system is a recommender system that can make more sophisticated recommendations by utilizing the user's contextual information and has an advantage that the user's emotional factor can be considered as compared with the existing recommender systems. In this study, we propose a method to infer the user's emotional state, which is one of the user's context information, by using the user's facial expression data and to reflect it on the recommendation process. This study collects the facial expression data of a user who is looking at a specific product and the user's product preference score. Then, we classify the facial expression data into several categories according to the previous research and construct a model that can predict them. Next, the predicted results are applied to existing collaborative filtering with contextual information. As a result of the study, it was shown that the recommended results of the context-aware recommender system including facial expression information show improved results in terms of recommendation performance. Based on the results of this study, it is expected that future research will be conducted on recommender system reflecting various contextual information.

Keywords: context-aware, emotional state, recommender systems, business analytics

Procedia PDF Downloads 229
18090 HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers

Authors: P. S. Seboletswe, Z. Mkhize, L. M. Katata-Seru

Abstract:

Protorhus longifolia is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of Protorhus longifolia methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the Rf = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in Protorhus longifolia leaves and also identify other biomarkers.

Keywords: biomarkers, fingerprint profiling, gallic acid, HPTLC, Protorhus longifolia

Procedia PDF Downloads 143
18089 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.

Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes

Procedia PDF Downloads 110
18088 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 243
18087 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 175
18086 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
18085 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments

Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis

Abstract:

In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.

Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion

Procedia PDF Downloads 207
18084 Android Application on Checking Halal Product Based on Augmented Reality

Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad

Abstract:

This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.

Keywords: android, augmented reality, food, halal, Malaysia, products, XML

Procedia PDF Downloads 456
18083 The Impact of Information and Communication Technology on Bilateral Trade in Goods

Authors: Christina Tay

Abstract:

This paper investigates the impact of Information and Communication Technology (ICT) on bilateral trade in goods. Empirical analysis is performed on the United States and 34 partnering countries from 2000 to 2013. Our econometric model fits the data well, explaining 52% of the variation in trade flows for goods trade, 53.2% of the variation in trade flows for goods export and 48% of the variation in trade flows for goods import. For every 10% increase in fixed broadband Internet subscribers per 100 people increases, goods trade by 7.9% and for every 5% increase in fixed broadband Internet subscribers per 100 people, goods export increases by 11%. For every 1% increase in fixed telephone line penetration per 100 people, goods trade increases by 26.3%, goods export increases by 24.4% and goods import increases by 24.8%. For every 1% increase in mobile-cellular telephone subscriptions, goods trade decreases by 29.6% and goods export decreases by 27.1%, whilst for every 0.01% increase in mobile-cellular telephone subscriptions, goods import decreases by 34.3%. For every 1% increase in the percentage of population who used the Internet from any location in the last 12 months Internet, goods trade increases by 32.5%, goods export increases by 38.9%, goods import increases by 33%. All our trade determinants as well as our ICT variables have significances on goods exports for the US. We can also draw from our study that the US relies more rather heavily on ICT for its goods export compared to goods import.

Keywords: bilateral trade, fixed broadband, fixed telephone, goods trade, information and communicative technologies, Internet, mobile-cellular phone

Procedia PDF Downloads 294
18082 A Secure Survey against Black Hole Attack in MANET

Authors: G. Usha, S. Kannimuthu, K. Mahalakshmi

Abstract:

Mobile Adhoc Network (MANET) is one of the most promising technologies that have applications ranging from various portable devices to military networks. MANET has no fixed infrastructure and the security of such network is a big concern. Therefore, in order to operate MANET’s securely, the misbehavior and intrusions should be detected before the attackers affect the network communication. In this article, we make a comprehensive survey against black hole attack that is a serious threat against MANET that exploits the routing behavior of the MANET. We have given broad survey solutions that detect black hole attacks in MANET. This is achieved by analyzing the techniques involved in detecting the attacks in each scheme. Furthermore, we examine about the challenges to the researchers for constructing an in-depth solution against black hole attack.

Keywords: AODV, cross layer security, mobile Adhoc network (MANET), packet delivery ratio, single layer security

Procedia PDF Downloads 406
18081 Mobile Phone Text Reminders and Voice Call Follow-ups Improve Attendance for Community Retail Pharmacy Refills; Learnings from Lango Sub-region in Northern Uganda

Authors: Jonathan Ogwal, Louis H. Kamulegeya, John M. Bwanika, Davis Musinguzi

Abstract:

Introduction: Community retail Pharmacy drug distribution points (CRPDDP) were implemented in the Lango sub-region as part of the Ministry of Health’s response to improving access and adherence to antiretroviral treatment (ART). Clients received their ART refills from nearby local pharmacies; as such, the need for continuous engagement through mobile phone appointment reminders and health messages. We share learnings from the implementation of mobile text reminders and voice call follow-ups among ART clients attending the CRPDDP program in northern Uganda. Methods: A retrospective data review of electronic medical records from four pharmacies allocated for CRPDDP in the Lira and Apac districts of the Lango sub-region in Northern Uganda was done from February to August 2022. The process involved collecting phone contacts of eligible clients from the health facility appointment register and uploading them onto a messaging platform customized by Rapid-pro, an open-source software. Client information, including code name, phone number, next appointment date, and the allocated pharmacy for ART refill, was collected and kept confidential. Contacts received appointment reminder messages and other messages on positive living as an ART client. Routine voice call follow-ups were done to ascertain the picking of ART from the refill pharmacy. Findings: In total, 1,354 clients were reached from the four allocated pharmacies found in urban centers. 972 clients received short message service (SMS) appointment reminders, and 382 were followed up through voice calls. The majority (75%) of the clients returned for refills on the appointed date, 20% returned within four days after the appointment date, and the remaining 5% needed follow-up where they reported that they were not in the district by the appointment date due to other engagements. Conclusion: The use of mobile text reminders and voice call follow-ups improves the attendance of community retail pharmacy refills.

Keywords: antiretroviral treatment, community retail drug distribution points, mobile text reminders, voice call follow-up

Procedia PDF Downloads 99
18080 Improving Pediatric Patient Experience

Authors: Matthew Pleshaw, Caroline Lynch, Caleb Eaton, Ali Kiapour

Abstract:

The problem addressed in this proposal is that of the lacking comfort and safety of inpatient rooms, specifically at Boston Children’s Hospital, with the implementation of a system that will allow inpatient children to feel more comfortable in the unfamiliar environment of a hospital. The focus is that of advancing and enhancing the healing process for children in a long-term inpatient stay at the hospital, though a combination of announcing a clinician or hospital staff’s arrival utilizing RFID (Fig. 1), and improving communication between clinicians, parents/guardians, patients, etc. by integrating a mobile application.

Keywords: Pediatrics, Hospital, RFID, Technology

Procedia PDF Downloads 158
18079 Effect of Mindfulness Training on Psychological Well-Being: An Experimental Study Using a Mobile App as Intervention

Authors: Beeto W. C. Leung, Nicole C. Y. Lee

Abstract:

It was well known that college students experienced a high level of stress and anxiety. College athletes, a special group of college students, may even encounter a higher level of pressure and distress due to their dual endeavors in academic and athletic settings. Due to the high demands and costs of mental health services, easily accessible, web-based self-help interventions are getting more popular. The aim of the present experimental study was to examine the potential intervention effect of a mindfulness-based self-help mobile App, called 'Smiling Mind', on mindfulness and psychological well-being. Forty-six college athletes, recruited from athletic teams of two local universities in Hong Kong, were randomly assigned to the Mindfulness App Group (MAG) and the Control Group (CG). All participants were administered the Mindful Attention Awareness Scale, Geriatric Depression Scale, and Perceived Stress Scale-10 before the study (Time 1, T1) and after the 4-week intervention (Time 2, T2). MAG was requested to use the app and follow the instructions every day for at least 5 days per week. Participants were also asked to record their daily app usage time. Results showed that, for MAG, from T1 to T2, mindfulness has been increased from 3.25 to 3.92; depressive symptoms and stress has been significantly decreased from 8.6 to 5.1 and 24.8 to 13.5 respectively while for the CG, mindfulness has been decreased slightly from 3.29 to 3.13; depressive symptoms and stress has been slightly increased from 7.1 to 7.3 and 24.1 to 27.1 respectively. Three mixed-design ANOVAs with time (T1, T2) as the within-subjects factor and intervention group (MAG, CG) as the between-subjects factor revealed a main effect of time on mindfulness, F(1, 41) = 10.28, p < 0.01, depressive symptoms, F(1, 41) = 6.55, p < 0.02 and stress, F(1, 41) = 16.96, p < 0.001 respectively. Both predicted interaction between time and intervention group on mindfulness, F(1, 41) = 26.6, p < 0.001, ηp 2 =0.39, depressive symptoms, F(1, 41) = 8.00, p < 0.01, ηp 2 =0.16 and Stress F(1, 41) = 49.3, p < 0.001, ηp 2 =0.55 were significant meaning that participants using the Mindfulness Mobile App in the intervention did experienced a significant increase in mindfulness and significant decrease in depressive symptoms and perceived level of stress after the 4-week intervention when compared with the control group. The present study provided encouraging empirical support for using Smiling Mind, a self-help mobile app, to promote mindfulness and mental health in a cost-effective way. Further studies should examine the potential use of Smiling Mind in different samples, including children and adolescence, as well as, investigate the lasting effects of using the app on other psychosocial outcomes such as emotional regulations.

Keywords: college athletes, experimental study, mindfulness mobile apps, psychological well-being

Procedia PDF Downloads 117
18078 Contribution for Rural Development Trough Training in Organic Farming

Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa

Abstract:

The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering online and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.

Keywords: mobile-learning, organic farming, rural development, survey

Procedia PDF Downloads 502
18077 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
18076 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 157