Search results for: Hybrid deep learning
9268 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System
Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim
Abstract:
This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation
Procedia PDF Downloads 4549267 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese
Abstract:
The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification
Procedia PDF Downloads 1809266 3D Finite Element Analysis of Yoke Hybrid Electromagnet
Authors: Hasan Fatih Ertuğrul, Beytullah Okur, Huseyin Üvet, Kadir Erkan
Abstract:
The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper.Keywords: yoke hybrid electromagnet, 3D finite element analysis, magnetic levitation system, magnetostatic analysis
Procedia PDF Downloads 7279265 Learning Object Interface Adapted to the Learner's Learning Style
Authors: Zenaide Carvalho da Silva, Leandro Rodrigues Ferreira, Andrey Ricardo Pimentel
Abstract:
Learning styles (LS) refer to the ways and forms that the student prefers to learn in the teaching and learning process. Each student has their own way of receiving and processing information throughout the learning process. Therefore, knowing their LS is important to better understand their individual learning preferences, and also, understand why the use of some teaching methods and techniques give better results with some students, while others it does not. We believe that knowledge of these styles enables the possibility of making propositions for teaching; thus, reorganizing teaching methods and techniques in order to allow learning that is adapted to the individual needs of the student. Adapting learning would be possible through the creation of online educational resources adapted to the style of the student. In this context, this article presents the structure of a learning object interface adaptation based on the LS. The structure created should enable the creation of the adapted learning object according to the student's LS and contributes to the increase of student’s motivation in the use of a learning object as an educational resource.Keywords: adaptation, interface, learning object, learning style
Procedia PDF Downloads 4069264 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters
Authors: Srinivasan Chandrasekaran, R. Nagavinothini
Abstract:
Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis
Procedia PDF Downloads 2049263 Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation
Authors: Hyun-Seok Hong, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee
Abstract:
In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model.Keywords: hybrid multi-DOF system, SPM, torque actuator, UAV, drone
Procedia PDF Downloads 6119262 Group Learning for the Design of Human Resource Development for Enterprise
Authors: Hao-Hsi Tseng, Hsin-Yun Lee, Yu-Cheng Kuo
Abstract:
In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.Keywords: development, education, human resource, learning
Procedia PDF Downloads 3599261 Omani PE Candidate Self-Reports of Learning Strategies Used to Learn Sport Skills
Authors: Nasser Al-Rawahi
Abstract:
The study aims at determining self-regulated learning strategies used by Omani physical education candidates to learn sport skills. The data were collected by a self-regulated learning theory questionnaire. The sample of the study comprised of 145 undergraduate physical education students enrolled in the department of physical education at the College of Education, Sultan Qaboos University. The findings of the study revealed that the most commonly used strategies for learning sport skills by Omani physical education candidate are ‘the effort learning strategies, planning learning strategies and evaluation learning strategies’. However, the reflection learning strategies, self-monitoring and self-efficacy learning strategies were revealed as the least used strategies by the PE candidates in learning and acquiring sport skills. Based on these findings, suggestions and recommendations for future research were provided.Keywords: learning strategies, physical education candidates, self-regulated learning theory, Oman
Procedia PDF Downloads 6149260 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process
Authors: A. Soualem
Abstract:
The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.Keywords: springback, deep drawing, expansion, restricted deep drawing
Procedia PDF Downloads 4549259 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program, and Institutional Levels
Authors: Yaping Gao
Abstract:
With the increasing globalization of education and the continued momentum and wider adoption of online education and digital learning all over the world, post pandemic, it is crucial that best practices and extensive experience and knowledge gained from the higher education community over the past few decades be adopted and adapted to benefit the broader international communities, which can be vastly different culturally and pedagogically. Schools and institutions worldwide should consider to adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or develop quality online or digital learning environments at course and program levels to help all students succeed. The presenter will introduce the primary components of the US-based quality assurance process, including: 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.Keywords: online education, digital learning, quality standards, best practices, online teaching and learning
Procedia PDF Downloads 269258 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors
Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek
Abstract:
Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.Keywords: experimental, photovoltaic, solar, temperature
Procedia PDF Downloads 4899257 Sleep Tracking AI Application in Smart-Watches
Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan
Abstract:
This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML
Procedia PDF Downloads 799256 Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study
Authors: Shi-Uk Lee, Chae Young Lim
Abstract:
Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort.Keywords: magnetic stimulation, lumbar multifidus, strengthening, ultrasonography
Procedia PDF Downloads 3719255 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 89254 Analysis of Process Methane Hydrate Formation That Include the Important Role of Deep-Sea Sediments with Analogy in Kerek Formation, Sub-Basin Kendeng, Central Java, Indonesia
Authors: Yan Bachtiar Muslih, Hangga Wijaya, Trio Fani, Putri Agustin
Abstract:
Demand of Energy in Indonesia always increases 5-6% a year, but production of conventional energy always decreases 3-5% a year, it means that conventional energy in 20-40 years ahead will not able to complete all energy demand in Indonesia, one of the solve way is using unconventional energy that is gas hydrate, gas hydrate is gas that form by biogenic process, gas hydrate stable in condition with extremely depth and low temperature, gas hydrate can form in two condition that is in pole condition and in deep-sea condition, wherein this research will focus in gas hydrate that association with methane form methane hydrate in deep-sea condition and usually form in depth between 150-2000 m, this research will focus in process of methane hydrate formation that is biogenic process and the important role of deep-sea sediment so can produce accumulation of methane hydrate, methane hydrate usually will be accumulated in find sediment in deep-sea environment with condition high-pressure and low-temperature this condition too usually make methane hydrate change into white nodule, methodology of this research is geology field work and laboratory analysis, from geology field work will get sample data consist of 10-15 samples from Kerek Formation outcrops as random for imagine the condition of deep-sea environment that influence the methane hydrate formation and also from geology field work will get data of measuring stratigraphy in outcrops Kerek Formation too from this data will help to imagine the process in deep-sea sediment like energy flow, supply sediment, and etc, and laboratory analysis is activity to analyze all data that get from geology field work, the result of this research can used to exploration activity of methane hydrate in another prospect deep-sea environment in Indonesia.Keywords: methane hydrate, deep-sea sediment, kerek formation, sub-basin of kendeng, central java, Indonesia
Procedia PDF Downloads 4619253 Improving the Security of Internet of Things Using Encryption Algorithms
Authors: Amirhossein Safi
Abstract:
Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.Keywords: internet of things, security, hybrid algorithm, privacy
Procedia PDF Downloads 4679252 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling
Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang
Abstract:
Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.Keywords: composite joints, composite materials, hybrid joints, single-lap joint
Procedia PDF Downloads 4069251 Language Development and Learning about Violence
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.Keywords: intervention, language development and learning, sexual violence, story
Procedia PDF Downloads 3319250 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 2229249 Social Network Impact on Self Learning in Teaching and Learning in UPSI (Universiti Pendidikan Sultan Idris)
Authors: Azli Bin Ariffin, Noor Amy Afiza Binti Mohd Yusof
Abstract:
This study aims to identify effect of social network usage on the self-learning method in teaching and learning at Sultan Idris Education University. The study involved 270 respondents consisting of students in the pre-graduate and post-graduate levels from nine fields of study offered. Assessment instrument used is questionnaire which measures respondent’s background includes level of study, years of study and field of study. Also measured the extent to which social pages used for self-learning and effect received when using social network for self-learning in learning process. The results of the study showed that students always visit Facebook more than other social sites. But, it is not for the purpose of self-learning. Analyzed data showed that 45.5% students not sure about using social sites for self-learning. But they realize the positive effect that they will received when use social sites for self-learning to improve teaching and learning process when 72.7% respondent agreed with all the statements provided.Keywords: facebook, self-learning, social network, teaching, learning
Procedia PDF Downloads 5369248 Finding Elves in Play Based Learning
Authors: Chloe L. Southern
Abstract:
If play is deemed to fulfill children’s social, emotional, and physical domains, as well as satisfy their natural curiosity and promote self-reflexivity, it is difficult to understand why play is not prioritized to the same extent for older children. This paper explores and discusses the importance of play-based learning as well as the preliminary implications beyond the realm of kindergarten. To further extend the inquiry, discussions pertaining to play-based learning are looked at through the lens of relevant methodologies and theories. Different education systems are looked at in certain areas of the world that lead to curiosities not only towards their play-based practices and curriculum but what ideologies they have that set them apart.Keywords: 21ˢᵗ century learning, play-based learning, student-centered learning, transformative learning
Procedia PDF Downloads 789247 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4909246 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 849245 A Hybrid Combustion Chamber Design for Diesel Engines
Authors: R. Gopakumar, G. Nagarajan
Abstract:
Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.Keywords: DI, IDI, hybrid combustion, diesel engines
Procedia PDF Downloads 5339244 Student Learning and Motivation in an Interculturally Inclusive Classroom
Authors: Jonathan H. Westover, Jacque P. Westover, Maureen S. Andrade
Abstract:
Though learning theories vary in complexity and usefulness, a thorough understanding of foundational learning theories is a necessity in today’s educational environment. Additionally, learning theories lead to approaches in instruction that can affect student motivation and learning. The combination of a learning theory and elements to enhance student motivation can create a learning context where the student can thrive in their educational pursuits. This paper will provide an overview of three main learning theories: (1) Behavioral Theory, (2) Cognitive Theory, and (3) Constructivist Theory and explore their connection to elements of student learning motivation. Finally, we apply these learning theories and elements of student motivation to the following two context: (1) The FastStart Program at the Community College of Denver, and (2) An Online Academic English Language Course. We discussed potential of the program and course to have success in increasing student success outcomes.Keywords: learning theory, student motivation, inclusive pedagogy, developmental education
Procedia PDF Downloads 2569243 Two Different Learning Environments: Arabic International Students Coping with the Australian Learning System
Authors: H. van Rensburg, B. Adcock, B. Al Mansouri
Abstract:
This paper discusses the impact of pedagogical and learning differences on Arabic international students’ (AIS) learning when they come to study in Australia. It describes the difference in teaching and learning methods between the students’ home countries in the Arabic world and Australia. There are many research papers that discuss the general experiences of international students in the western learning systems, including Australia. However, there is little research conducted specifically about AIS learning in Australia. Therefore, the data was collected through in-depth, semi-structured interviews with AIS who are learning at an Australian regional university in Queensland. For that reason, this paper contributes to fill a gap by reporting on the learning experiences of AIS in Australia and, more specifically, on the AIS’ pedagogical experiences. Not only discussing the learning experiences of AIS, but also discussing the cultural adaptation using the Oberg’s cultural adaptation model. This paper suggests some learning strategies that may benefit AIS and academic lecturers when teaching students from a completely different culture and language.Keywords: arabic international students, cultural adaption, learning differences, learning systems
Procedia PDF Downloads 6039242 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2119241 Glaucoma Detection in Retinal Tomography Using the Vision Transformer
Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan
Abstract:
Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning
Procedia PDF Downloads 1919240 Instruction and Learning Design Consideration for the Development of Mobile Learning Application
Authors: M. Sarrab, M. Elbasir
Abstract:
Most of mobile learning applications currently available are developed for the formal education and learning environment. Those applications are characterized by the improvement of the interaction process between instructors and learners to provide more collaboration and flexibility in the learning process. Despite the long history and large amount of research on Instruction design model and mobile learning there is no complete and well defined set of steps to follow in designing mobile learning applications. Based on this scenario, this paper focuses on identifying instruction design phases considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study with focus on standards for learning and mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.Keywords: instruction design, mobile learning, mobile application
Procedia PDF Downloads 6039239 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone
Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato
Abstract:
This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus
Procedia PDF Downloads 45