Search results for: Elastic Modulus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1321

Search results for: Elastic Modulus

661 Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, some generalization integral inequalities of Hermite–Hadamard type for functions whose derivatives are s–convex in modulus are given by using k–fractional integrals. Some applications to special means are obtained as well. Some known versions are recovered as special cases from our results. We note that our inequalities can be viewed as new refinements of the previous results. Finally, our results have a deep connection with various fractional integral operators and interested readers can find new interesting results using our idea and technique as well.

Keywords: Hermite-Hadamard's inequalities, Hölder's inequality, k-Riemann-Liouville fractional integral, special means

Procedia PDF Downloads 127
660 Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete

Authors: Talah Aissa

Abstract:

This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).

Keywords: marble powder, durability, concrete, cement

Procedia PDF Downloads 290
659 Design and Assessment of Base Isolated Structures under Spectrum-Compatible Bidirectional Earthquakes

Authors: Marco Furinghetti, Alberto Pavese, Michele Rinaldi

Abstract:

Concave Surface Slider devices have been more and more used in real applications for seismic protection of both bridge and building structures. Several research activities have been carried out, in order to investigate the lateral response of such a typology of devices, and a reasonably high level of knowledge has been reached. If radial analysis is performed, the frictional force is always aligned with respect to the restoring force, whereas under bidirectional seismic events, a bi-axial interaction of the directions of motion occurs, due to the step-wise projection of the main frictional force, which is assumed to be aligned to the trajectory of the isolator. Nonetheless, if non-linear time history analyses have to be performed, standard codes provide precise rules for the definition of an averagely spectrum-compatible set of accelerograms in radial conditions, whereas for bidirectional motions different combinations of the single components spectra can be found. Moreover, nowadays software for the adjustment of natural accelerograms are available, which lead to a higher quality of spectrum-compatibility and to a smaller dispersion of results for radial motions. In this endeavor a simplified design procedure is defined, for building structures, base-isolated by means of Concave Surface Slider devices. Different case study structures have been analyzed. In a first stage, the capacity curve has been computed, by means of non-linear static analyses on the fixed-base structures: inelastic fiber elements have been adopted and different direction angles of lateral forces have been studied. Thanks to these results, a linear elastic Finite Element Model has been defined, characterized by the same global stiffness of the linear elastic branch of the non-linear capacity curve. Then, non-linear time history analyses have been performed on the base-isolated structures, by applying seven bidirectional seismic events. The spectrum-compatibility of bidirectional earthquakes has been studied, by considering different combinations of single components and adjusting single records: thanks to the proposed procedure, results have shown a small dispersion and a good agreement in comparison to the assumed design values.

Keywords: concave surface slider, spectrum-compatibility, bidirectional earthquake, base isolation

Procedia PDF Downloads 292
658 Thermal Ageing Effect on Mechanical Behavior of Polycarbonate

Authors: H. Babou, S. Ridjla, B. Amerate, R. Ferhoum, M. Aberkane

Abstract:

This work is devoted to the experimental study of thermal ageing effect on the mechanical and micro structural behavior of polycarbonate (PC). A simple compression tests, micro hardness and an IRTF analysis were completed in order to characterize the response of material on specimens after ageing at a temperature of order 100 C° and for serval maintain duration 72, 144 and 216 hours. These investigations showed a decrease of the intrinsic properties of polycarbonate (Young modulus, yield stress, etc.); the superposition of spectra IRTF shows that the intensity of chemical connections C=C, C-O, CH3 and C-H are influenced by the duration of thermal ageing; in addition, an increase of 30 % of micro hardness was detected after 216 hour of ageing.

Keywords: amorphous polymer, polycarbonate, mechanical behavior, compression test, thermal ageing

Procedia PDF Downloads 409
657 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System

Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka

Abstract:

The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.

Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting

Procedia PDF Downloads 178
656 Effect of Rotation on Love Wave Propagation in Piezoelectric Medium with Corrugation

Authors: Soniya Chaudhary

Abstract:

The present study analyses the propagation of Love wave in rotating piezoelectric layer lying over an elastic substrate with corrugated boundaries. The appropriate solutions in the considered medium satisfy the required boundary conditions to obtain the dispersion relation of Love wave for charge free as well as electrically shorted cases. The effects of rotation are shown by graphically on the non-dimensional speed of the Love wave. In addition to classical case, some existing results have been deduced as particular case of the present study. The present study may be useful in rotation sensor and SAW devices.

Keywords: corrugation, dispersion relation, love wave, piezoelectric

Procedia PDF Downloads 225
655 Use of Cellulosic Fibres in Double Layer Porous Asphalt

Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael

Abstract:

Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.

Keywords: binder drainage, cellulosic fibres, permanent deformation, porous asphalt

Procedia PDF Downloads 226
654 Measurement of Rheologic Properties of Soft Tissue (Muscle Tissue) by Device Called Myotonometer

Authors: Petr Sifta, Vaclav Bittner, Martin Kysela, Matej Kolar

Abstract:

The purpose of the research described in this work is to answer how to measure the rheologic (viscoelastic) properties tendo–deformational characteristics of soft tissue. The method would also resemble muscle palpation examination as it is known in clinical practice. For this purpose, an instrument with the working name “myotonometer” has been used. At present, there is lack of objective methods for assessing the muscle tone by viscous and elastic properties of soft tissue. That is why we decided to focus on creating or finding quantitative and qualitative methodology capable of specifying muscle tone.

Keywords: rheologic properties, tendo–deformational characteristics, viscosity, elasticity, hypertonus

Procedia PDF Downloads 623
653 Composite Base Natural Fiber

Authors: Noureddine Mahmoudi

Abstract:

The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP / date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight.

Keywords: plant fiber, palm, SEM, compatibilizer

Procedia PDF Downloads 458
652 Defect Modes in Multilayered Piezoelectric Structures

Authors: D. G. Piliposyan

Abstract:

Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.

Keywords: piezoelectric layered structure, periodic phononic crystal, bandgap, bloch waves

Procedia PDF Downloads 224
651 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines

Authors: Alfred Hasanaj , Ardit Gjeta, Miranda Kullolli

Abstract:

The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.

Keywords: defects, failure assessment diagrams, steel pipes, safety factor

Procedia PDF Downloads 445
650 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material

Authors: Moudar H. A. Zgoul, Amin Al Zamer

Abstract:

Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.

Keywords: adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation

Procedia PDF Downloads 420
649 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform

Authors: Enqing Chen, Jianbo Wang

Abstract:

It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.

Keywords: edge detection, NSCT, shift invariant, modulus maxima

Procedia PDF Downloads 488
648 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations

Authors: Sanjeet Patra, Soham Roychowdhury

Abstract:

In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.

Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation

Procedia PDF Downloads 77
647 A Constitutive Model for Time-Dependent Behavior of Clay

Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili

Abstract:

A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.

Keywords: bounding surface, consistency theory, constitutive model, viscosity

Procedia PDF Downloads 491
646 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215
645 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips

Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley

Abstract:

French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.

Keywords: french fries, mechanical properties, PEF, potatoes

Procedia PDF Downloads 236
644 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 235
643 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test

Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad

Abstract:

The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7  to 132 , 224 , and 396  in presence of 15 cm, 20 cm, and 30 cm base course, respectively.

Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade

Procedia PDF Downloads 247
642 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior

Authors: Sunghyun Kim, Hong-Gun Park

Abstract:

In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.

Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall

Procedia PDF Downloads 378
641 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.

Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution

Procedia PDF Downloads 327
640 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity

Authors: Muna Alghabshi, Edmana Krishnan

Abstract:

A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.

Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method

Procedia PDF Downloads 314
639 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model

Procedia PDF Downloads 323
638 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 296
637 Moisture Variations in Unbound Layers in an Instrumented Pavement Section

Authors: R. Islam, Rafiqul A. Tarefder

Abstract:

This study presents the moisture variations of unbound layers from April 2012 to January 2014 in the Interstate 40 (I-40) pavement section in New Mexico. Three moisture probes were installed at different layers inside the pavement which measure the continuous moisture variations of the pavement. Data show that the moisture contents of unbound layers are typically constant throughout the day and month unless there is rainfall. Moisture contents of all unbound layers change with rainfall. Change in ground water table may affect the moisture content of unbound layers which has not investigated in this study. In addition, the Level 3 predictions of moisture contents using the Pavement Mechanistic-Empirical (ME) Design software are compared and found quite reasonable. However, results presented in the current study may not be applicable for pavement in other regions.

Keywords: asphalt pavement, moisture probes, resilient modulus, climate model

Procedia PDF Downloads 493
636 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 399
635 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 401
634 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System

Authors: B. Noruziaan, A. Shvarzman, R. Leahy

Abstract:

An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.

Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond

Procedia PDF Downloads 420
633 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite

Authors: Dolly Selikane, Thandi Gumede

Abstract:

Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.

Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite

Procedia PDF Downloads 124
632 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 265