Search results for: Butterworth low pass filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1219

Search results for: Butterworth low pass filter

559 Assessing the Mechanical Safety, Durability, Strength, and Stability of Wooden Furniture Produced in Ghana

Authors: Haruna Seidu, Francis Wilson Owusu, Michael Mensah, Felix Boakye, James Korang, Safia Ibrahim

Abstract:

Over the years, wooden furniture produced in Ghana had no means of testing their products against standards. It was therefore difficult for such furniture producers to know whether their products conform to international standards. The setting up of the ISO 17025 compliant laboratory has become a reference and accessing point for determining the quality of the furniture they produce. The objective of the study includes the determination of mechanical safety, durability, strength, and stability of wooden furniture produced in Ghana. Twelve wooden furniture manufacturers were randomly selected to design furniture (chairs and tables) for testing. 9 out of the 12 produced chairs, and three provided tables. Standard testing methods were used in this experiment, including GS EN 581-1, GS EN 581-2, and GS EN 581-3. The test results analysis indicates 55.6% of the chairs tested passed all applicable tests. 66.7% of tables tested passed all the applicable tests. The percentage pass and failure of the 12 furniture were 58.3% and 41.7% respectively. In conclusion, chair manufacturers had good designs that withstand the standard testing of strength and durability; most failures occurred largely as a result of poor stability designs adopted for the construction of the chairs and tables. It was observed that the manufacturers did not use the software in designing their furniture.

Keywords: durability, international standards, mechanical safety, wooden furniture design

Procedia PDF Downloads 291
558 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 138
557 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 230
556 Foggy Image Restoration Using Neural Network

Authors: Khader S. Al-Aidmat, Venus W. Samawi

Abstract:

Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.

Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration

Procedia PDF Downloads 371
555 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 466
554 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 268
553 A New Approach to Interval Matrices and Applications

Authors: Obaid Algahtani

Abstract:

An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.

Keywords: interval analysis, interval matrices, state space model, Kalman Filter

Procedia PDF Downloads 410
552 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate

Authors: Angela Maria Fasnacht

Abstract:

Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.

Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive

Procedia PDF Downloads 104
551 Software Verification of Systematic Resampling for Optimization of Particle Filters

Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey

Abstract:

Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.

Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking

Procedia PDF Downloads 67
550 Determining the Functionality of Urban Wildlife with Large Megafauna: A Case Study from Chobe District, Northern Botswana

Authors: Tempe S. F. Adams, Michael J. Chase, Tracey L. Rogers, Keith E. A. Leggett

Abstract:

Transfrontier wildlife corridors can be successful conservation tools, connecting protected areas and reducing the impact of habitat fragmentation on mobile species. Urban wildlife corridors have been proposed as a potential mitigation tool to facilitate the passage of elephants through towns without causing conflict with urban communities. However, because such corridors are typically narrow and close to human development, wildlife (particularly large mammals) may be less likely to use them. We used remote-sensor camera traps and global positioning system collars to identify the movement patterns of African elephants Loxondonta africana through narrow, urban corridors in Botswana. The corridors were in three types of human-dominated land-use designations with varying levels of human activity: agricultural, industrial and open space recreational land. We found that elephants used the corridors within all three land-use designations and we identified, using a model selection approach, that season, time of day and rainfall were important factors in determining the presence of elephants in the corridors. Elephants moved more slowly through the narrow corridors compared with their movement patterns through broader, wide-ranging corridors. Our results indicate that urban wildlife corridors are useful for facilitating elephants to pass through urban areas.

Keywords: camera traps, conservation, human-elephant coexistence, land management, urban wildlife corridors

Procedia PDF Downloads 286
549 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology

Authors: Abhimanyu Kumar, Chirag Gupta

Abstract:

This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.

Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI

Procedia PDF Downloads 93
548 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 148
547 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector

Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald

Abstract:

The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.

Keywords: education and training, knowledge sharing, online resources, water and sanitation

Procedia PDF Downloads 251
546 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 168
545 Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India

Authors: Dudam Bharath Kumar, Harsh Kumar, Naveed Ahmed

Abstract:

Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments.

Keywords: noise pollution, vehicular traffic, urban environment, noise meter

Procedia PDF Downloads 282
544 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 40
543 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes

Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic

Abstract:

The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.

Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes

Procedia PDF Downloads 194
542 Application of Nanofibers in Heavy Metal (HM) Filtration

Authors: Abhijeet Kumar, Palaniswamy N. K.

Abstract:

Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.

Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction

Procedia PDF Downloads 52
541 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 365
540 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 214
539 Ethno-Botanical of Seaweeds and Sea Grass in Eastern Indonesia

Authors: Siegfried Berhimpon, Jein Dangeubun, Sandra Baulu, Rene Ch. Kepel

Abstract:

In Indonesia, macro-alga is known as seaweeds or rumput laut and sea grass or lamun, and have been used as vegetables and medicine since long time ago. This studies have been done, to collect data about utilization of seaweed and sea grass as food or medicine in Eastern Indonesia. Six regencies in two provinces have been chosen as sampling areas i.e. South-East Maluku, West-East Maluku, and Aru in province of Maluku; and Sangihe, Sitaro, and Minahasa in province of North Sulawesi. The results shown that in the pass, seaweeds and sea grass have been widely used as food and medicine, and there are similarity between one area and other areas in species and in the way to prepare or to cook the food. Ten species of alga and 2 species of sea grass were consumed as vegetables and desert, and one species of sea grass was used for traditional medicine. Nowadays, because of easier to get terrestrial vegetables, the people in the coastal area rarely consumed marine vegetables, and if there are no attempt to promote and to socialize the custom, the habits trend to disappear. Environmental degradation was another caused has been identified. Seaweed contained high content of Iodine and dietary fiber, therefore, this food can overcomes the problem of iodine deficiency, and to supply an exotic high-fiber foods. In addition, by consuming seaweeds, marine culture industry will be developed, especially in the number of species seaweeds to be cultivated.

Keywords: ethno-botany, seaweed, sea grass, exotic food

Procedia PDF Downloads 482
538 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 449
537 Vibration Propagation in Structures Through Structural Intensity Analysis

Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi

Abstract:

Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.

Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity

Procedia PDF Downloads 160
536 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 257
535 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 318
534 Email Phishing Detection Using Natural Language Processing and Convolutional Neural Network

Authors: M. Hilani, B. Nassih

Abstract:

Phishing is one of the oldest and best known scams on the Internet. It can be defined as any type of telecommunications fraud that uses social engineering tricks to obtain confidential data from its victims. It’s a cybercrime aimed at stealing your sensitive information. Phishing is generally done via private email, so scammers impersonate large companies or other trusted entities to encourage victims to voluntarily provide information such as login credentials or, worse yet, credit card numbers. The COVID-19 theme is used by cybercriminals in multiple malicious campaigns like phishing. In this environment, messaging filtering solutions have become essential to protect devices that will now be used outside of the secure perimeter. Despite constantly updating methods to avoid these cyberattacks, the end result is currently insufficient. Many researchers are looking for optimal solutions to filter phishing emails, but we still need good results. In this work, we concentrated on solving the problem of detecting phishing emails using the different steps of NLP preprocessing, and we proposed and trained a model using one-dimensional CNN. Our study results show that our model obtained an accuracy of 99.99%, which demonstrates how well our model is working.

Keywords: phishing, e-mail, NLP preprocessing, CNN, e-mail filtering

Procedia PDF Downloads 100
533 Air Pollution Control from Rice Shellers - a Case Study

Authors: S. M. Ahuja

Abstract:

A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is also fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90 %. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution there is improvement in the quality of products like bran and the life of shelling machinery has also enhanced. The payback period of this technology is less than four shelling months.

Keywords: air pollution, cyclone separator, pneumatic conveying, rice shellers

Procedia PDF Downloads 283
532 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 286
531 A Constitutional Theory of the American Presidency

Authors: Elvin Lim

Abstract:

This article integrates the debate about presidential powers with the debate about federalism, arguing that there are two ways of exercising presidential powers, one working in tandem with expanding federal powers, and the other working against it. Alexander Hamilton and Thomas Jefferson—the former a Federalist and the latter echoing the views of many Anti-Federalists—disagreed not only on the constitutional basis of prerogative, but also on the ends for which it should be deployed. This tension has always existed in American politics, and is reproduced today. Modern Democrats and Republicans both want a strong executive, but the Democrats who want a strong executive to pass legislation to expand the reach of the federal government; naturally, they must rely on an equally empowered Congress to do so. Republicans generally do not want an intrusive federal government, which is why their defense of a strong presidency does not come alongside a call for a strong Congress. This distinction cannot be explained without recourse to foundational yet opposing views about the appropriate role of federal power. When we bring federalism back in, we see that there are indeed two presidencies; one neo-Federalist, in favor of moderate presidential prerogative alongside a robust Congress directed collectively to a national state-building agenda and expanding the federal prerogative; another, neo-Anti-Federalist, in favor of expansive presidential prerogative and an ideologically sympathetic Congress equally suspicious of federal power to retard or roll back national state-building in favour of states rights.

Keywords: US presidency, federalism, prerogative, anti-federalism

Procedia PDF Downloads 102
530 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures

Authors: Zong-Sheng Chen

Abstract:

With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.

Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide

Procedia PDF Downloads 47