Search results for: scholarship of teaching and learning (SoTL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8556

Search results for: scholarship of teaching and learning (SoTL)

1746 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players

Authors: Jo Mitchell, Daniel Johnson

Abstract:

MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.

Keywords: Australian football league, digital application, positive psychology, wellbeing

Procedia PDF Downloads 238
1745 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 108
1744 Reasonable Adjustment for Students with Disabilities - Opportunities and Limits in Social Work Education

Authors: Bartelsen-Raemy Annabelle, Gerber Andrea

Abstract:

Objectives: The adoption of the UN Convention on the Rights of Persons with Disabilities has the effect that higher education institutions in Switzerland are called upon to promote inclusive university education. In this context, our School of Social Work aims to provide fair participation and the removal of barriers in our study programmes at bachelor’s and master’s levels. In 2015 we developed a concept of reasonable adjustments for students with disabilities and chronic illness as an instrument to provide equal opportunities for those students. We reviewed the implementation of this concept as part of our quality management process. Using a qualitative research design, we explored how affected students and lecturers experience the processes and measures taken and which barriers they still perceive. Methods: We captured subjective perspectives and experience of measures by conducting 15 problem-centred interviews with affected students and three experimental focus groups with lecturers. The data was processed using structured qualitative content analysis and summarised as key categories. Results: All respondents evaluated the concept of reasonable adjustment very positively and emphasised its importance for equal opportunities. Our analysis revealed differences in the usage and perception of both groups and showed that the students interviewed were a heterogeneous group with different needs. Overall, the students described the adjustments, in particular in relation to examinations and other assignments, as a great relief. The lecturers expressed high standards for their own teaching and supervision of students and, at the same time, wished for more support from the university. However, despite the positive evaluation by the lecturers, the limits of reasonable adjustment became evident. It is necessary to consider the limits of reasonable adjustments in terms of professional skills. Conclusion: Reasonable adjustments should, therefore, be seen as an element of an inclusive university culture that must be complemented by further measures. Taking this into account, we have planned further research as a basis for the development of a diversity and inclusion policy.

Keywords: opportunities and limits, reasonable adjustment, social work education, students with disabilities

Procedia PDF Downloads 132
1743 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 57
1742 Obesity-Associated Vitamin D Insufficiency Among Women

Authors: Archana Surendran, Kalpana C. A.

Abstract:

Vitamin D insufficiency is highly prevalent in women. Vitamin D bioavailability could be reduced in obesity due to increased sequestration by white adipose tissue. Increased sun exposure due to more frequent outdoor physical activity as well as a diet rich in vitamin D could be the common cause of both higher levels of 25(OH)D and a more favorable lipid profile. The study was conducted with the aim to assess the obesity status among selected working women in Coimbatore, determine their lifestyle and physical activity pattern, study their dietary intake, estimate the vitamin D and lipid profile of selected women and associate the relationship between Vitamin D and obesity among the selected women. A total of 100 working women (non pregnant, non lactating) working in IT sector, hotels and teaching staff were selected for the study. Anthropometric measurements and dietary recall were conducted for all. The women were further categorized as obese and non-obese based on their BMI. Fifteen obese and 15 non-obese women were selected and their fasting blood glucose level, serum Vitamin D and lipid profile were measured. Association between serum vitamin D, lipid profile, anthropometric measurements, food intake and sun exposure was correlated. Fifty six percent of women in the age group between 25-39 years and 44 percent of women in the age group between 40-45 years were obese. Waist and hip circumference of women in the age group between 40-45 years (89.7 and 107.4 cm) were higher than that of obese women in the age group between 25-39 years (88.6 and 102.8 cm). There were no women with sufficient vitamin D levels. In the age group between 40-45 years (obese women), serum Vitamin D was inversely proportional to waist-hip ratio and LDL cholesterol. There was an inverse relationship between body fat percentage and Total cholesterol with serum vitamin D among the women of the age group between 25-39 years. Consumption of milk and milk products were low among women. Intake of calcium was deficit among the women in both the age groups and showed a negative correlation. Sun exposure was less for all the women. Findings from the study revealed that obese women with a higher consumption of fat and less intake of calcium-rich foods have low serum Vitamin D levels than the non-obese women. Thus, it can be concluded that there is an association between Vitamin D status and obesity among adult women.

Keywords: obesity, sun exposure, vitamin D, women

Procedia PDF Downloads 134
1741 Urban Refugees and Education in Developing Countries

Authors: Sheraz Akhtar

Abstract:

In recent years, a massive influx of refugees into developing countries has placed significant constraints on the host government’s capacities to provide social services, including education, to all. As a result, the refugee communities often find themselves deprived of their rights to education in these host countries, particularly for those who to live outside camps in urban locations. While previous research has examined the educational experiences of refugees who have resettled in developed nations, there remains a dearth of research on the educational experiences of urban refugees in developing nations. This study examines this issue through a case study of Pakistani Christian refugees living in urban settings in Thailand. Using a combination of observations within community learning centres set up by international non-government organisations (INGOs) working with these communities, and interviews with young Pakistani Christian refugees and their families, the research aims to give greater voice to the Pakistani Christian refugee community living in Thailand, and better understand their educational aspirations.

Keywords: Education, Developing Countries , INGOs, Urban Refugees

Procedia PDF Downloads 125
1740 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City

Authors: Kibreab Alene Fenite

Abstract:

The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.

Keywords: assessment, challenges, equipment, guidelines, implementation, performance

Procedia PDF Downloads 281
1739 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
1738 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 116
1737 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 320
1736 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 409
1735 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia

Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy

Abstract:

The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.

Keywords: procrastination, psychology, analyze needs, behavior

Procedia PDF Downloads 381
1734 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
1733 The Role of ChatGPT in Enhancing ENT Surgical Training

Authors: Laura Brennan, Ram Balakumar

Abstract:

ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.

Keywords: artificial intelligence, otolaryngology, surgical training, medical education

Procedia PDF Downloads 159
1732 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 218
1731 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
1730 Investigating Factors Impacting Student Motivation in Classroom Use of Digital Games

Authors: Max Neu

Abstract:

A large variety of studies on the utilization of games in classroom settings promote positive effects on students motivation for learning. Still, most of those studies rarely can give any specifics about the factors that might lead to changes in students motivation. The undertaken study has been conducted in tandem with the development of a highly classroom-optimized serious game, with the intent of providing a subjectively positive initial contact with the subject of political participation and to enable the development of personal motivation towards further engagement with the topic. The goal of this explorative study was to Identify the factors that influence students motivation towards the subject when serious games are being used in classroom education. Therefor, students that have been exposed to a set of classes in which a classroom optimized serious game has been used. Afterwards, a selection of those have been questioned in guided interviews that have been evaluated through Qualitative Content Analysis. The study indicates that at least 23 factors in the categories, mechanics, content and context potentially influence students motivation to engage with the classes subject. The conclusions are of great value for the further production of classroom games as well as curricula involving digital games in general.

Keywords: formal education, games in classroom, motivation, political education

Procedia PDF Downloads 109
1729 Research Study on the Concept of Unity of Ummah and Its Sources in the Light of Islamic Teachings

Authors: Ghazi Abdul Rehman Qasmi

Abstract:

Islam is the preacher and torch-bearer of unity and solidarity. All the followers of Islam are advised to be united. Islam strongly condemns those elements which disunite the unity of Muslim Ummah. Like pearls in a rosary, Islam has united the Muslims from all over the world in the wreath of unity and forbade the Muslims to avoid separation and to be disintegrated. The aspect of unity is prominent in all divine injunctions and about worship. By offering five times obligatory congregational prayers, passion of mutual love and affection is increased and on the auspicious days like Friday, Eid-ul-fiter and Eid-ul-azha, majority of the Muslims come together at central places to offer these congregational prayers. Thus unity and harmony among the Muslims can be seen. Similarly the Muslim pilgrims from all over the world eliminate all kind of worldly discrimination to perform many rituals of pilgrimage while wearing white color cloth as a dress. Pilgrimage is a demonstration of Islamic strength. When the Muslims from all over the world perform the same activities together and they offer their prayers under the leadership of one leader (IMAM). Muslims come together on the occasion of pilgrimage to perform Tawaf (seven circuits,first three circuits at a hurried pace(Rammal) and followed by four times, more closely, at a leisurely pace, round the Holy Kaabah to perform circumambulation known as Tawaf in religious terminology,Saee(running or walking briskly seven times between two small hills Safa&Marwa), Ramy-al-jamarat (throwing pebbles at the stone pillars, symbolizing the devil). In this way dignity and sublimity of Islam is increased and unity and integrity of Muslim Ummah is promoted also. By studying the life history of Hazrat Muhammad (P.B.U.H) we come to know that our Holy Prophet (P.B.U.H) has put emphasis on unity and integrity. We have to follow the Islamic teachings to create awareness among the members of Muslim Ummah. In the light of the Holy Quran and Sunnah, we have to utilize all the sources and potential for this noble cause.

Keywords: unity, Ummah, sources, Islamic teaching

Procedia PDF Downloads 294
1728 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 74
1727 Autonomy in Healthcare Organisations: A Comparative Case Study of Middle Managers in England and Iran

Authors: Maryam Zahmatkesh

Abstract:

Middle managers form a significant occupational category in organisations. They undertake a vital role, as they sit between the operational and strategic roles. Traditionally they were acting as diplomat administrators, and were only in power to meet the demands of professionals. Following the introduction of internal market, in line with the principles of New Public Management, middle managers have been considered as change agents. More recently, in the debates of middle managers, there is emphasis on entrepreneurialism and enacting strategic role. It was assumed that granting autonomy to the local organisations and the inception of semi-autonomous hospitals (Foundation Trusts in England and Board of Trustees in Iran) would give managers more autonomy to act proactively and innovatively. This thesis explores the hospital middle managers’ perception of and responses to public management reforms (in particular, hospital autonomy) in England and Iran. In order to meet the aims of the thesis, research was undertaken within the interpretative paradigm, in line with social constructivism. Data were collected from interviews with forty-five middle managers, observational fieldwork and documentary analysis across four teaching university hospitals in England and Iran. The findings show the different ways middle managers’ autonomy is constrained in the two countries. In England, middle managers have financial and human recourses, but their autonomy is constrained by government policy and targets. In Iran, middle managers are less constrained by government policy and targets, but they do not have financial and human resources to exercise autonomy. Unbalanced autonomy causes tension and frustration for middle managers. According to neo-institutional theory, organisations are deeply embedded within social, political, economic and normative settings that exert isomorphic and internal population-level pressures to conform to existing and established modes of operation. Health systems which are seeking to devolve autonomy to middle managers must appreciate the multidimensional nature of the autonomy, as well as the wider environment that organisations are embedded, if they are about to improve the performance of managers and their organisations.

Keywords: autonomy, healthcare organisations, middle managers, new public management

Procedia PDF Downloads 310
1726 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
1725 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 260
1724 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
1723 Awarness the Effect of Quality Food and Nutrition on Health Will Help Develop a Healthy Lifestyle

Authors: Hamnah Nisar

Abstract:

As food is something which is particularly important for survival, in fact, it improves the quality of life and promotes health. Quality food is a key to a healthy life. Consumption of food depends on the knowledge we have regarding the nutrients it contains. Moreover, the awareness and knowledge about something is an initial stage for its improvement. We cannot work on anything unless we have knowledge about it. The pros and cons, effects, causes, dos, and don'ts, especially for an important things like food, are a necessity to learn. That is why my research would be all about analyzing what difference awareness makes on people and how making people more aware about a certain thing can help them improve their lifestyles and bring a positive change for them. The research would be done through questionnaires and interviews among two classes, one would be the upper class and the other would-be lower class. Because the upper class can easily access learning facilities and can know about the new things than the lower class. The questions would be related to what kind of food do they consume, what health issues they face, or what health issues are common among their regions. The results of the research would be helpful to know firstly the effects of awareness and education regarding food on health, how a basic thing like knowledge can have a significant effect on health and can be the cause of several diseases.

Keywords: nutrition, awareness, quality food, knowledge

Procedia PDF Downloads 77
1722 The Results of Reading Test on Movement Staff Notation System

Authors: Sonay Ödemiş

Abstract:

Movement Staff Notation System (MSNS) is a movement transcription, analyzing method, and it's been constantly improved since it was first developed in 2005. This method is based on human anatomy, is being used and applied in the lessons at The Department of Turkish Folk Dances in Istanbul Technical University, nowadays. In this research, it is aimed to discover, how MSNS can help to participants about learning the basic movements of lower extremity. This experiment has six volunteers who were randomly selected. Each volunteer has been graded for their dance backgrounds and all the volunteers have been studied for six weeks. Each week has included different topic and examples such as contacts on foot, jumps, timing, directions and basic symbols of MSNS. Examples have changed from easy to hard. On conclusion, 6 volunteer subjects were tested in final test. The tests were recorded with the camera. In this presentation, it will be explained and detailed the results of the reading test on MSNS. Some of important video records will be watched and interpreted after the test. As a conclusion, all the scores will be interpreted and assessed from different perspectives.

Keywords: dance notation, Turkish dances, reading test, Education

Procedia PDF Downloads 233
1721 'Low Electronic Noise' Detector Technology in Computed Tomography

Authors: A. Ikhlef

Abstract:

Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.

Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector

Procedia PDF Downloads 127
1720 A Study of the Use of Arguments in Nominalizations as Instanciations of Grammatical Metaphors Finished in -TION in Academic Texts of Native Speakers

Authors: Giovana Perini-Loureiro

Abstract:

The purpose of this research was to identify whether the nominalizations terminating in -TION in the academic discourse of native English speakers contain the arguments required by their input verbs. In the perspective of functional linguistics, ideational metaphors, with nominalization as their most pervasive realization, are lexically dense, and therefore frequent in formal texts. Ideational metaphors allow the academic genre to instantiate objectification, de-personalization, and the ability to construct a chain of arguments. The valence of those nouns present in nominalizations tends to maintain the same elements of the valence from its original verbs, but these arguments are not always expressed. The initial hypothesis was that these arguments would also be present alongside the nominalizations, through anaphora or cataphora. In this study, a qualitative analysis of the occurrences of the five more frequent nominalized terminations in -TION in academic texts was accomplished, and thus a verification of the occurrences of the arguments required by the original verbs. The assembling of the concordance lines was done through COCA (Corpus of Contemporary American English). After identifying the five most frequent nominalizations (attention, action, participation, instruction, intervention), the concordance lines were selected at random to be analyzed, assuring the representativeness and reliability of the sample. It was possible to verify, in all the analyzed instances, the presence of arguments. In most instances, the arguments were not expressed, but recoverable, either in the context or in the shared knowledge among the interactants. It was concluded that the realizations of the arguments which were not expressed alongside the nominalizations are part of a continuum, starting from the immediate context with anaphora and cataphora; up to a knowledge shared outside the text, such as specific area knowledge. The study also has implications for the teaching of academic writing, especially with regards to the impact of nominalizations on the thematic and informational flow of the text. Grammatical metaphors are essential to academic writing, hence acknowledging the occurrence of its arguments is paramount to achieve linguistic awareness and the writing prestige required by the academy.

Keywords: corpus, functional linguistics, grammatical metaphors, nominalizations, academic English

Procedia PDF Downloads 147
1719 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator

Authors: Sonal H. Singh, Bhaskar Bhowmick

Abstract:

The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.

Keywords: entrepreneurship development, grassroots innovation, India, structural equation model

Procedia PDF Downloads 266
1718 The Relevance of Community Involvement in Flood Risk Governance Towards Resilience to Groundwater Flooding. A Case Study of Project Groundwater Buckinghamshire, UK

Authors: Claude Nsobya, Alice Moncaster, Karen Potter, Jed Ramsay

Abstract:

The shift in Flood Risk Governance (FRG) has moved away from traditional approaches that solely relied on centralized decision-making and structural flood defenses. Instead, there is now the adoption of integrated flood risk management measures that involve various actors and stakeholders. This new approach emphasizes people-centered approaches, including adaptation and learning. This shift to a diversity of FRG approaches has been identified as a significant factor in enhancing resilience. Resilience here refers to a community's ability to withstand, absorb, recover, adapt, and potentially transform in the face of flood events. It is argued that if the FRG merely focused on the conventional 'fighting the water' - flood defense - communities would not be resilient. The move to these people-centered approaches also implies that communities will be more involved in FRG. It is suggested that effective flood risk governance influences resilience through meaningful community involvement, and effective community engagement is vital in shaping community resilience to floods. Successful community participation not only uses context-specific indigenous knowledge but also develops a sense of ownership and responsibility. Through capacity development initiatives, it can also raise awareness and all these help in building resilience. Recent Flood Risk Management (FRM) projects have thus had increasing community involvement, with varied conceptualizations of such community engagement in the academic literature on FRM. In the context of overland floods, there has been a substantial body of literature on Flood Risk Governance and Management. Yet, groundwater flooding has gotten little attention despite its unique qualities, such as its persistence for weeks or months, slow onset, and near-invisibility. There has been a little study in this area on how successful community involvement in Flood Risk Governance may improve community resilience to groundwater flooding in particular. This paper focuses on a case study of a flood risk management project in the United Kingdom. Buckinghamshire Council is leading Project Groundwater, which is one of 25 significant initiatives sponsored by England's Department for Environment, Food and Rural Affairs (DEFRA) Flood and Coastal Resilience Innovation Programme. DEFRA awarded Buckinghamshire Council and other councils 150 million to collaborate with communities and implement innovative methods to increase resilience to groundwater flooding. Based on a literature review, this paper proposes a new paradigm for effective community engagement in Flood Risk Governance (FRG). This study contends that effective community participation can have an impact on various resilience capacities identified in the literature, including social capital, institutional capital, physical capital, natural capital, human capital, and economic capital. In the case of social capital, for example, successful community engagement can influence social capital through the process of social learning as well as through developing social networks and trust values, which are vital in influencing communities' capacity to resist, absorb, recover, and adapt. The study examines community engagement in Project Groundwater using surveys with local communities and documentary analysis to test this notion. The outcomes of the study will inform community involvement activities in Project Groundwater and may shape DEFRA policies and guidelines for community engagement in FRM.

Keywords: flood risk governance, community, resilience, groundwater flooding

Procedia PDF Downloads 70
1717 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401