Search results for: Power Devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8249

Search results for: Power Devices

1499 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 166
1498 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

Preventing piping fatigue flow induced vibration in the Oil & Gas sector demands not only the constant development of engineering design methodologies based on available software packages, but also special piping support technologies for designing safe and reliable piping systems. The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically intrinsically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se, and the pipework associated steel support structure. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system in order to perform the required piping modification. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the type of process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces, the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap), and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it was possible to resolve the piping vibration problem throughout redesigning adequately the existing static piping supports and by adding new viscous dampers supports. This was conducted on-stream at the oil crude pipeline in question without the necessity of reducing the production of the plant. Concluding that the application of the methodology of this paper can be applied to solve similar cases in a straightforward manner.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia PDF Downloads 143
1497 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 351
1496 The Visual Side of Islamophobia: A Social-Semiotic Analysis

Authors: Carmen Aguilera-Carnerero

Abstract:

Islamophobia, the unfounded hostility towards Muslims and Islam, has been deeply studied in the last decades from different perspectives ranging from anthropology, sociology, media studies, and linguistics. In the past few years, we have witnessed how the birth of social media has transformed formerly passive audiences into an active group that not only receives and digests information but also creates and comments publicly on any event of their interest. In this way, average citizens now have been entitled with the power of becoming potential opinion leaders. This rise of social media in the last years gave way to a different way of Islamophobia, the so called ‘cyberIslamophobia’. Considerably less attention, however, has been given to the study of islamophobic images that accompany the texts in social media. This paper attempts to analyse a corpus of 300 images of islamophobic nature taken from social media (from Twitter and Facebook) from the years 2014-2017 to see: a) how hate speech is visually constructed, b) how cyberislamophobia is articulated through images and whether there are differences/similarities between the textual and the visual elements, c) the impact of those images in the audience and their reaction to it and d) whether visual cyberislamophobia has undergone any process of permeating popular culture (for example, through memes) and its real impact. To carry out this task, we have used Critical Discourse Analysis as the most suitable theoretical framework that analyses and criticizes the dominant discourses that affect inequality, injustice, and oppression. The analysis of images was studied according to the theoretical framework provided by the visual framing theory and the visual design grammar to conclude that memes are subtle but very powerful tools to spread Islamophobia and foster hate speech under the guise of humour within popular culture.

Keywords: cyberIslamophobia, visual grammar, social media, popular culture

Procedia PDF Downloads 167
1495 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 302
1494 Progressive Collapse of Cooling Towers

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.

Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete

Procedia PDF Downloads 481
1493 Effects of Paternity: A Comparative Study to Analyze the Organization's Support in the Psychological Development of Children in India and USA

Authors: Aayushi Dalal

Abstract:

It is the mother who bears the child in her womb for 9 months. It is typically rooted in the Indian culture that it is solely the responsibility of women to take care of the children and as a result the gender roles are stereotyped. Instead of a 50-50 partnership in parenting the child, it is hackneyed that men take the responsibility of the bread earner while women nurture the children by staying at home. Thus, mothers are considered to be more psychologically connected to the children than fathers. But the current society is observing role dilution of parents which can create a gap in understanding from the organization’s perspective. This is the basis of the study. The emergence of women into the job market has forever changed how society views the traditional roles of fathers and mothers. Feminism and financial power has reformed the classic parenting model. This has given rise to a more open and flexible society consequently emphasizing the father's importance in the emotional well being of the child while also being capable caretakers and disciplinarians. This study focuses on analyzing the comparative differences of the father's role in the psychological development of the child in India and USA while taking into consideration the organization’s support towards them. A sample size of 150 fathers- 75 from India and 75 from USA was selected and a structured survey was carried out which had several open ended as well as closed ended questions probing to the issue. It was made sure that the environmental factors had as minimal effect as possible on the subjects. The findings of this research would materialize a framework for fathers to understand the magnitude of their role in their child's upbringing. This would not only ameliorate the "father-child" relationship but also make organization more sympathetic towards their employees.

Keywords: paternity, child development, psychology, gender role, organization policy

Procedia PDF Downloads 218
1492 Does Pakistan Stock Exchange Offer Diversification Benefits to Regional and International Investors: A Time-Frequency (Wavelets) Analysis

Authors: Syed Jawad Hussain Shahzad, Muhammad Zakaria, Mobeen Ur Rehman, Saniya Khaild

Abstract:

This study examines the co-movement between the Pakistan, Indian, S&P 500 and Nikkei 225 stock markets using weekly data from 1998 to 2013. The time-frequency relationship between the selected stock markets is conducted by using measures of continuous wavelet power spectrum, cross-wavelet transform and cross (squared) wavelet coherency. The empirical evidence suggests strong dependence between Pakistan and Indian stock markets. The co-movement of Pakistani index with U.S and Japanese, the developed markets, varies over time and frequency where the long-run relationship is dominant. The results of cross wavelet and wavelet coherence analysis indicate moderate covariance and correlation between stock indexes and the markets are in phase (i.e. cyclical in nature) over varying durations. Pakistan stock market was lagging during the entire period in relation to Indian stock market, corresponding to the 8~32 and then 64~256 weeks scale. Similar findings are evident for S&P 500 and Nikkei 225 indexes, however, the relationship occurs during the later period of study. All three wavelet indicators suggest strong evidence of higher co-movement during 2008-09 global financial crises. The empirical analysis reveals a strong evidence that the portfolio diversification benefits vary across frequencies and time. This analysis is unique and have several practical implications for regional and international investors while assigning the optimal weightage of different assets in portfolio formulation.

Keywords: co-movement, Pakistan stock exchange, S&P 500, Nikkei 225, wavelet analysis

Procedia PDF Downloads 358
1491 Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study

Authors: Amina Ramadni, Safia Taleb, André Dératani

Abstract:

The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH- ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique.

Keywords: fluoride removal, hydrochemical characterization of groundwater, natural materials, nanofiltration

Procedia PDF Downloads 218
1490 Determination of Antioxidant Activity in Raphanus raphanistrum L.

Authors: Esma Hande Alıcı, Gülnur Arabacı

Abstract:

Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.

Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish

Procedia PDF Downloads 276
1489 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna

Authors: Babatunde Olatujoye, Binbin Yang

Abstract:

Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.

Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband

Procedia PDF Downloads 19
1488 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus

Authors: Violina Angelova, Stefan Krustev

Abstract:

The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.

Keywords: available soil phosphorus, certified samples, determination, soil test extractants

Procedia PDF Downloads 151
1487 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification

Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas

Abstract:

Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.

Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles

Procedia PDF Downloads 232
1486 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 205
1485 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 124
1484 Osteosuture in Fixation of Displaced Lateral Third Clavicle Fractures: A Case Report

Authors: Patrícia Pires, Renata Vaz, Bárbara Teles, Marco Pato, Pedro Beckert

Abstract:

Introduction: The management of lateral third clavicle fractures can be challenging due to difficulty in distinguishing subtle variations in the fracture pattern, which may be suggestive of potential fracture instability. They occur most often in men between 30 and 50 years of age, and in individuals over 70 years of age, its distribution is equal between both men and women. These fractures account for 10%–30% of all clavicle fractures and roughly 30%–45% of all clavicle nonunion fractures. Lateral third clavicle fractures may be treated conservatively or surgically, and there is no gold standard, although the risk of nonunion or pseudoarthrosis impacts the recommendation of surgical treatment when these fractures are unstable. There are many strategies for surgical treatment, including locking plates, hook plates fixation, coracoclavicular fixation using suture anchors, devices or screws, tension band fixation with suture or wire, transacromial Kirschner wire fixation and arthroscopically assisted techniques. Whenever taking the hardware into consideration, we must not disregard that obtaining adequate lateral fixation of small fragments is a difficult task, and plates are more associated to local irritation. The aim of the appropriate treatment is to ensure fracture healing and a rapid return to preinjury activities of daily living but, as explained, definitive treatment strategies have not been established and the variety of techniques avalilable add up to the discussion of this topic. Methods and Results: We present a clinical case of a 43-year-old man with the diagnosis of a lateral third clavicle fracture (Neer IIC) in the sequence of a fall on his right shoulder after a bicycle fall. He was operated three days after the injury, and through K-wire temporary fixation and indirect reduction using a ZipTight, he underwent osteosynthesis with an interfragmentary figure-of-eight tension band with polydioxanone suture (PDS). Two weeks later, there was a good aligment. He kept the sling until 6 weeks pos-op, avoiding efforts. At 7-weeks pos-op, there was still a good aligment, starting the physiotherapy exercises. After 10 months, he had no limitation in mobility or pain and returned to work with complete recovery in strength. Conclusion: Some distal clavicle fractures may be conservatively treated, but it is widely accepted that unstable fractures require surgical treatment to obtain superior clinical outcomes. In the clinical case presented, the authors chose an osteosuture technique due to the fracture pattern, its location. Since there isn´t a consensus on the prefered fixation method, it is important for surgeons to be skilled in various techniques and decide with their patient which approach is most appropriate for them, weighting the risk-benefit of each method. For instance, with the suture technique used, there is no wire migration or breakage, and it doesn´t require a reoperation for hardware removal; there is also less tissue exposure since it requires a smaller approach in comparison to the plate fixation and avoids cuff tears like the hook plate. The good clinical outcome on this case report serves the purpose of expanding the consideration of this method has a therapeutic option.

Keywords: lateral third, clavicle, suture, fixation

Procedia PDF Downloads 76
1483 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 387
1482 Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines

Authors: Navid Eghtedarpour, Mohammad Reza Hasani

Abstract:

Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning.

Keywords: lightning protection, BF rate, grounding system, insulation level, line surge arrester

Procedia PDF Downloads 130
1481 Women in Violent Conflicts and the Challenges of Food Security in Northeast Nigeria: The Case of Boko Haram Insurgency

Authors: Grace Modupe Adebo, Ayodeji Oluwamuyiwa Adedapo

Abstract:

Women are key actors in ensuring food security in terms of food availability, food access, and food utilization in the developing economy, however, they suffer mostly during violent conflicts due to their feminist nature of rearing and caring for their children and relatives. The study was embarked upon to access the effects of violent conflicts posed by Boko Haram insurgency on women and food security in the Northeast of Nigeria. The study made use of secondary data. A time series data collected over a 22 years period were used. The data collected were subjected to descriptive statistics and t-test analysis. The findings of the study established a significant difference in food production (availability) before and after the Boko Haram insurgency at the 1% level of significance. The high level of Internally Displaced Person (IDP) with a high proportion of women depicts a very low level of food accessibility as the men and women has fled and uninhabited their place of abode for over a period of four to five years, thus diminishing their economic power, and the means of acquiring food which invariably endanger food stability and utilization. The study confirmed the abduction and changing roles of women as cooks, porters, spies, partners, and sex slaves to Boko Haram troop members, thus affecting their livelihoods and food security. The study recommends hands-on interventions by the governmental, non-governmental and international agencies to terminate the activities of Boko Haram in the area and restore the food production for enhanced food security.

Keywords: Boko Haram insurgency, food accessibility, food production, food utilization, women’s livelihoods

Procedia PDF Downloads 149
1480 Conceptualizing a Biomimetic Fablab Based on the Makerspace Concept and Biomimetics Design Research

Authors: Petra Gruber, Ariana Rupp, Peter Niewiarowski

Abstract:

This paper presents a concept for a biomimetic fablab as a physical space for education, research and development of innovation inspired by nature. Biomimetics as a discipline finds increasing recognition in academia and has started to be institutionalized at universities in programs and centers. The Biomimicry Research and Innovation Center was founded in 2012 at the University of Akron as an interdisciplinary venture for the advancement of innovation inspired by nature and is part of a larger community fostering the approach of bioimimicry in the Great Lakes region of the US. With 30 faculty members the center has representatives from Colleges of Arts and Sciences (e.g., biology, chemistry, geoscience, and philosophy) Engineering (e.g., mechanical, civil, and biomedical), Polymer Science, and Myers School of Arts. A platform for training PhDs in Biomimicry (17 students currently enrolled) is co-funded by educational institutions and industry partners. Research at the center touches on many areas but is also currently biased towards materials and structures, with highlights being materials based on principles found in spider silk and gecko attachment mechanisms. As biomimetics is also a novel scientific discipline, there is little standardisation in programming and the equipment of research facilities. As a field targeting innovation, design and prototyping processes are fundamental parts of the developments. For experimental design and prototyping, MIT's maker space concept seems to fit well to the requirements, but facilities need to be more specialised in terms of accessing biological systems and knowledge, specific research, production or conservation requirements. For the education and research facility BRIC we conceptualize the concept of a biomimicry fablab, that ties into the existing maker space concept and creates the setting for interdisciplinary research and development carried out in the program. The concept takes on the process of biomimetics as a guideline to define core activities that shall be enhanced by the allocation of specific spaces and tools. The limitations of such a facility and the intersections to further specialised labs housed in the classical departments are of special interest. As a preliminary proof of concept two biomimetic design courses carried out in 2016 are investigated in terms of needed tools and infrastructure. The spring course was a problem based biomimetic design challenge in collaboration with an innovation company interested in product design for assisted living and medical devices. The fall course was a solution based biomimetic design course focusing on order and hierarchy in nature with the goal of finding meaningful translations into art and technology. The paper describes the background of the BRIC center, identifies and discusses the process of biomimetics, evaluates the classical maker space concept and explores how these elements can shape the proposed research facility of a biomimetic fablab by examining two examples of design courses held in 2016.

Keywords: biomimetics, biomimicry, design, biomimetic fablab

Procedia PDF Downloads 295
1479 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures

Procedia PDF Downloads 272
1478 Combined Effect of Global Warming and Water Structures on Rivers’ Water Quality and Aquatic Life: Case Study of Esna Barrage on the Nile River in Egypt

Authors: Sherine A. El Baradei

Abstract:

Global warming and climatic change are very important topics that are being studied and investigated nowadays as they have lots of diverse impacts on mankind, water quality, aquatic life, wildlife,…etc. Also, many water and hydraulics structures like dams and barrages are being built every day to satisfy water consumption needs, irrigation purposes and power generating purposes. Each of global warming and water structures alone has diversity of impacts on water quality and aquatic life in rivers. This research is investigating the dual combined effect of both water structures and global warming on the water quality and aquatic life through mathematical modeling. A case study of the Esna Barrage on the Nile River in Egypt is being studied. This research study is taking into account the effects of both seasons; namely, winter and summer and their effects on air and hence water temperature of the Nile reach under study. To do so, the study is conducted on the last 23 years to investigate the effect of global warming and climatic change on the studied river water. The mathematical model is then combining the dual effect of the Esna barrage and the global warming on the water quality; as well as, on aquatic life of the Nile reach under study. From the results of the mathematical model, it could be concluded that the dual effect of water structures and global warming is very negative on the water quality and the aquatic life in rivers upstream those structures.

Keywords: aquatic life, barrages, climatic change, dissolved oxygen, global warming, river, water quality, water structures

Procedia PDF Downloads 367
1477 Personal Characteristics and Personality Traits as Predictors of Compassion Fatigue among Counselors from Dominican Schools in the Philippines

Authors: Neil Jordan M. Uy, Fe Pelilia V. Hernandez

Abstract:

A counselor is always regarded as a professional who embodies the willingness to help others through the process of counseling. He is knowledgeable and skillful of the different theories, tools, and techniques that are useful in aiding the client to cope with their dilemmas. The negative experiences of the clients that are shared during the counseling session can affect the professional counselor. Compassion fatigue, a professional impairment, is characterized by the decline of one’s productivity and the feeling of anxiety and stress brought about as the counselor empathizes, listens, and cares for others. This descriptive type of research aimed to explore variables that are predictors of compassion fatigue utilizing three research instruments; Demographic Profile Sheet, Professional Quality of Life Scale, and Neo-Pi-R. The 52 respondents of this study were counselors from the different Dominican schools in the Philippines. Generally, the counselors have low level of compassion fatigue across personal characteristics (age, gender, years of service, highest educational attainment, and professional status) and personality traits (extraversion, agreeableness, conscientiousness, openness, and neuroticism). ANOVA validated the findings of this that among the personal characteristics and personality traits, extraversion with f-value of 3.944 and p-value of 0.026, and conscientiousness, with f-value of 4.125 and p-value of 0.022 were found to have significant difference in the level of compassion fatigue. A very significant difference was observed with neuroticism with f-value of 6.878 and p-value 0.002. Among the personal characteristics and personal characteristics, only neuroticism was found to predict compassion fatigue. The computed r2 value of 0.204 using multiple regression analysis suggests that 20.4 percent of compassion fatigue can be predicted by neuroticism. The predicting power of neuroticism can be computed from the regression model Y=0.156x+26.464; where x is the number of neuroticism.

Keywords: big five personality traits, compassion fatigue, counselors, professional quality of life scale

Procedia PDF Downloads 378
1476 Problems Associated with Fibre-Reinforced Composites Ultrasonically-Assisted Drilling

Authors: Sikiru Oluwarotimi Ismail, Hom Nath Dhakal, Anish Roy, Dong Wang, Ivan Popov

Abstract:

The ultrasonically-assisted drilling (UAD) is a non-traditional technique which involves the superimposition of a high frequency and low amplitude vibration, usually greater than 18kHz and less than 20µm respectively, on a drill bit along the feed direction. UAD has remarkable advantages over the conventional drilling (CD), especially the high drilling-force reduction. Force reduction improves the quality of the drilled holes, reduces power consumption rate and cost of production. Nevertheless, in addition to the setbacks of UAD including expensiveness of set-up, unpredicted results and chipping effects, this paper presents the problems of insignificant force reduction and poor surface quality during UAD of hemp fibre-reinforced composites (HFRCs), a natural composite, with polycaprolactone (PCL) matrix. The experimental results obtained depict that HFRCs/PCL samples have more burnt chip-materials attached on the drilled holes during UAD than CD. This effect produced a very high surface roughness (Ra), up to 13µm. In a bid to reduce these challenges, different drilling parameters (feed rates and cutting speeds, frequencies and amplitudes for UAD), conditions (dry machining and airflow cooling) and diameters of drill bits (3mm and 6mm of high speed steel), as well as HFRCs/PCL samples of various fibre aspect ratios, including 0 (neat), 19, 26, 30 and 38 have been used. However, the setbacks still persisted. Evidently, the benefits of UAD are not obtainable for the drilling of the HFRCs/PCL laminates. These problems occurred due to the 60 °C melting temperature of PCL, quite lower than 56-90.2 °C and 265–290.8 °C composite-tool interface temperature during CD and UAD respectively.

Keywords: force reduction, hemp fibre-reinforced composites, ultrasonically-assisted drilling, surface quality

Procedia PDF Downloads 438
1475 A Preliminary Exploration of the German Federal Government's Energy Crisis from the Processes of Decision Entrapment Behavior: The Case of the Nord Stream 1 and 2 Shutdowns

Authors: Chia Han Lee

Abstract:

Without energy, the economy would grind to a halt. Germany's prosperity and security depend on a reliable and affordable energy supply. In recent years, Germany's energy policy has undergone major changes. Due to the sharp turn in energy, Germany cannot extend the service of nuclear power plants and can only find a rapid transition energy source: natural gas for a limited time. This study attempts to use processes of decision entrapment behavior and document analysis to explain research questions. Through primary and secondary information such as official reports, parliamentary minutes, media interview records, and speech records, the author sorted out the important events experienced by the three coalition governments (Gerhard Schröder, Angela Merkel, and Olaf Scholz) and the relationship between Nord Stream 1 and Nord Stream 2 with primary and secondary sources. Also, compare it with the processes of decision entrapment behavior, which designed in this study, and divide it into four stages to explore its key elements one by one. In this regard, the following conclusions are drawn: First, from the perspective of processes of decision entrapment behavior, Merkel’s government firmly believes that she can overcome difficulties because of her past experience in crisis management capabilities. However, the outbreak of war between Ukraine and Russia was beyond Merkel's planning. Second, in the face of the crisis, the Scholz’s government increased the import of natural gas from other countries and began to import liquefied natural gas to make up for the energy gap of Russian natural gas.

Keywords: german research, nord stream gas pipeline, energy policy, processes of decision entrapment behavior

Procedia PDF Downloads 39
1474 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 72
1473 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 125
1472 An Exploration of Organisational Elements on Social Media Platforms Based Knowledge Sharing: The Case of Higher Education Institutions in Malaysia

Authors: Nor Erlissa Abd Aziz, R. M. U. S. Udagedara, S. Sharifi

Abstract:

Managing and sharing knowledge has been a broadly satisfactory strategy to most of the organisations. Harnessing the power of knowledge supported the organisations to gain a competitive advantage over their competitors. Along with the invention of social media, knowledge sharing process has been more efficient and comfortable. Numerous researches have been conducted to investigate the effect of social media platforms for public and academic use. Furthermore, knowledge sharing, in general, have been subject to considerable n research, but research on sharing knowledge in Higher Education Institutions (HEIs) is rare. Also, it is noted that still there is a gap related to the organisational elements that contribute to the successful knowledge sharing through social media platforms. Thus, this research aims to investigate organisational elements that influence the social media platform based knowledge sharing within the context of Malaysian Higher Education Institutions (HEIs). The research used qualitative research methods to get an in-depth understanding of the subject matter. The conclusions of this study are based on interpreting the results of semi-structured interviews with academic staff from various Malaysian HEIs from the public and private sectors. Documents review will supplement the data from the interviews, and this ensures triangulation of the responses and thus increase the validity of the research. This research contributes to the literature by investigating an in-depth understanding the role of organisational elements about the social media platform based knowledge sharing in nourishing knowledge and spreading it to become better HEIs in utilising their knowledge. The proposed framework which identifies the organisational elements influences of social media platform based knowledge sharing will present as the main contribution of this research.

Keywords: knowledge sharing, social media, knowledge and knowledge management

Procedia PDF Downloads 205
1471 Neutron Irradiated Austenitic Stainless Steels: An Applied Methodology for Nanoindentation and Transmission Electron Microscopy Studies

Authors: P. Bublíkova, P. Halodova, H. K. Namburi, J. Stodolna, J. Duchon, O. Libera

Abstract:

Neutron radiation-induced microstructural changes cause degradation of mechanical properties and the lifetime reduction of reactor internals during nuclear power plant operation. Investigating the effects of neutron irradiation on mechanical properties of the irradiated material (hardening, embrittlement) is challenging and time-consuming. Although the fast neutron spectrum has the major influence on microstructural properties, the thermal neutron effect is widely investigated owing to Irradiation-Assisted Stress Corrosion Cracking firstly observed in BWR stainless steels. In this study, 300-series austenitic stainless steels used as material for NPP's internals were examined after neutron irradiation at ~ 15 dpa. Although several nanoindentation experimental publications are available to determine the mechanical properties of ion irradiated materials, less is available on neutron irradiated materials at high dpa tested in hot-cells. In this work, we present particular methodology developed to determine the mechanical properties of neutron irradiated steels by nanoindentation technique. Furthermore, radiation-induced damage in the specimens was investigated by High Resolution - Transmission Electron Microscopy (HR-TEM) that showed the defect features, particularly Frank loops, cavity microstructure, radiation-induced precipitates and radiation-induced segregation. The results of nanoindentation measurements and associated nanoscale defect features showed the effect of irradiation-induced hardening. We also propose methodologies to optimized sample preparation for nanoindentation and microscotructural studies.

Keywords: nanoindentation, thermal neutrons, radiation hardening, transmission electron microscopy

Procedia PDF Downloads 158
1470 Study of Composite Materials for Aisha Containment Chamber

Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.

Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source

Procedia PDF Downloads 210