Search results for: thermodynamic approach
7740 Awning: An Unsung Trait in Rice (Oryza Sativa L.)
Authors: Chamin Chimyang
Abstract:
The fast-changing global trend and declining forest region have impacted agricultural lands; animals, especially birds, might become one of the major pests in the near future and go neglected or unreported in many kinds of literature and events, which is mainly because of bird infestation being a pocket-zone problem. This bird infestation can be attributed to the balding of the forest region and the decline in their foraging hotspot due to anthropogenic activity. There are many ways to keep away the birds from agricultural fields, both conventional and non-conventional. But the question here is whether the traditional approach of bird scarring methods such as scare-crows are effective enough. There are many traits in rice that are supposed to keep the birds away from foraging in paddy fields, and the selection of such traits might be rewarding, such as the angle of the flag leaf from the stem, grain size, novelty of any trait in that particular region and also an awning. Awning, as such, is a very particular trait on which negative selection was imposed to such an extent that there has been a decline in the nucleotide responsible for the said trait. Thus, in this particular session, histology, genetics, genes behind the trait and how awns might be one of the solutions to the problem stated above will be discussed in detail.Keywords: bird infestation, awning, negative selection, domestication
Procedia PDF Downloads 357739 Enacting Educational Technology Affordances as Mechanisms Responsible for Gaining Epistemological Access: A Case of Underprivileged Students at Higher Institutions in Northern Nigeria
Authors: Bukhari Badamasi, Chidi G. Ononiwu
Abstract:
Globally, educational technology (EdTech) has become a known catalyst for gaining access to education, job creation, and national development of a nation. Howbeit, it is common understanding that higher institutions continue to deploy digital technologies, to help provide access to education, but in most case, it is somehow institutional access not epistemological access especially in sub Saharan African higher institutions. Some scholars, however, lament the fact that studies on educational technology affordances are mostly fragmented because they focus on specific theme or sub aspect of access (i.e., institutional access). Thus, drawing from the Archer Morphogenetic approach, and Gibson Affordance theory, and applying critical realist based Danermark model for explanatory research, the study seeks to conduct a realist case study on underprivileged students in Higher institutions on how they gain epistemological access by enacting educational technology (EdTech) affordances.Keywords: affordance, epistemological access, educational technology, underprivileged students
Procedia PDF Downloads 917738 Genetic Algorithms Based ACPS Safety
Authors: Emine Laarouchi, Daniela Cancila, Laurent Soulier, Hakima Chaouchi
Abstract:
Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc.Keywords: safety, unmanned aerial vehicles , CPS, ACPS, drones, path planning, genetic algorithms
Procedia PDF Downloads 1857737 Gender Perception on Food Waste within the Household and Community: Case Study in Bandung City, Indonesia
Authors: Gumilar Hadiningrat, Stewart Barr, Jo Little
Abstract:
In Indonesia, the majority of those who manage food waste are women. It is Indonesian culture that women act as household managers. Therefore, women as household managers hold an important role in reducing food waste within households. Meanwhile, in the community, women’s organisations are some of the most active organisations dealing with food waste. Food waste has an increasing profile and is the subject of much global attention and have economic, social and environmental impacts. Reducing food waste will improve future food availability in the context of global population growth and increasing resource scarcity. The aim of this research is to investigate women’s experience and understanding of dealing with food waste in the household and in the community. The research will use an inductive approach using in-depth qualitative methods. In terms of data collection, two methods will be used - questionnaire and interviews. All in all, it could be claimed that women, both within the household and the community in Indonesia, hold an important role in dealing with food waste.Keywords: community waste management, food waste, gender, household waste, waste management
Procedia PDF Downloads 2437736 Digital Nudge, Social Proof Nudge and Trust on Brand loyalty
Authors: Mirza Amin Ul Haq
Abstract:
Purpose – the purpose of conducting this research is to check the impact of nudges constructs, whether they create an encouragement factor with consumer brand loyalty and relating of word-of-mouth power have some kind of effect with all independent variables. Desin/Methodology/Approach – this study adopted the four constructs (i.e., Digital Nudge, Social Proof Nudge, Trust, and the mediator Word of Mouth) and explore its effect and connection with Brand Loyalty. A total of 390 respondents were selected for self-administrated questionnaire to obtain the finding of the research. Findings – the impact and cause between the constructs were done through structural equation modeling. The findings show a positive impact of social proof nudge and word of mouth whereas, digital nudge and trust have the weaker influence on the consumer choices when talk about brand loyalty. Originality/Value – Further implication for research and its marketing strategies in the field of clothing industry creating brand loyalty with customer.Keywords: nudge, digital nudge, social proof, online buying, brand loyalty, trust, word of mouth
Procedia PDF Downloads 1217735 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning
Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens
Abstract:
Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence
Procedia PDF Downloads 1647734 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 827733 Ovarian Stimulation and Oocyte Cryopreservation for Fertility Preservation in Adolescent Females at the Royal Children’s Hospital: A Case Series
Authors: Kira Merigan
Abstract:
BACKGROUND- Fertility preservation (FP) measures are increasingly recognised as an important consideration for children and adolescents planned to undergo potentially damaging gonadotoxic therapy. Worldwide, there are very few documented cases of FP in young females by way of ovarian stimulation and oocyte cryopreservation.AIM – To report a case series of mature oocyte cryopreservation in 5post-pubertal adolescents aged 14-17 years old, with varied medical conditions requiring gonadotoxic treatment. SETTING-These cases took place via a multidisciplinary team approach at The Royal Children’s Hospital, a large tertiary centre in Melbourne, Australia. INTERVENTION– Ovarian stimulation and oocyte collection was performed as detailed in each case. RESULTS –Across the 5 patients, 3-28 oocytes were retrieved. We report pre-treatment workup, complications, and delays to treatment. CONCLUSION- Oocyte cryopreservation may be a safe alternative to ovarian tissue cryopreservation (OTC) in the adolescent populationKeywords: fertility preservation, adolescent, ovarian stimulation, oocyte cryopreservation
Procedia PDF Downloads 1727732 The Technological Problem of Simulation of the Logistics Center
Authors: Juraj Camaj, Anna Dolinayova, Jana Lalinska, Miroslav Bariak
Abstract:
Planning of infrastructure and processes in logistic center within the frame of various kinds of logistic hubs and technological activities in them represent quite complex problem. The main goal is to design appropriate layout, which enables to realize expected operation on the desired levels. The simulation software represents progressive contemporary experimental technique, which can support complex processes of infrastructure planning and all of activities on it. It means that simulation experiments, reflecting various planned infrastructure variants, investigate and verify their eligibilities in relation with corresponding expected operation. The inducted approach enables to make qualified decisions about infrastructure investments or measures, which derive benefit from simulation-based verifications. The paper represents simulation software for simulation infrastructural layout and technological activities in marshalling yard, intermodal terminal, warehouse and combination between them as the parts of logistic center.Keywords: marshalling yard, intermodal terminal, warehouse, transport technology, simulation
Procedia PDF Downloads 5257731 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations
Authors: Rady Farag Aziz Ibrahim
Abstract:
The gap between Islamic terrorism and human rights has become an important issue in the fight against Islamic terrorism worldwide. This situation is repeated because terrorism and human rights are interconnected in such a way that when the former begins, the latter becomes subject to violence. This unknown relationship was recognized in the Vienna Declaration and Program of Action adopted at the International Conference on Human Rights held in Vienna on 25 June 1993, confirming that terrorist acts, in all their forms and manifestations, aim to destroy the rights of individuals. humanity to destroy. Therefore, Islamic terrorism is a violation of basic human rights. For this purpose, the first part of the article will focus on the relationship between terrorism and human rights and the synergy between these two concepts. The second part then explores the emerging concept of cyber threats and how they exist. Additionally, technology analysis will be conducted against threats based on human rights. This will be achieved through analysis of the concept of 'securitization' of human rights and by striking a balance between counter-terrorism measures and the protection of human rights at all costs. This article concludes with recommendations on how to balance terrorism and human rights today.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development
Procedia PDF Downloads 487730 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1607729 Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement
Authors: Trudon Kabangu Mpinga, Ruth Mutala, Shaloom Mbambu, Yvette Kalubi Kashama, Kabeya Mukeba Yakasham
Abstract:
A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways.Keywords: aircraft, modeling, simulation, yakam matrix, contact, wet runway
Procedia PDF Downloads 207728 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4577727 The Effect of Evil Eye in the Individuals' Journey for Personhood within a Christian Orthodox Society
Authors: Nikolaos Souvlakis
Abstract:
The present paper negotiates the effect of 'the evil eye' on individuals' mental health while at the same time poses the problem of how the evil eye fits into the anthropological arena as a key question that forges a fundamental link between religion, anthropology and mental health professions. It is the argument of the paper that the evil eye is an essential and fundamental human phenomenon and therefore any scholarly field involved in its study must consider the insight it provides into the development of personhood. The study was an anthropological study in the geographical area of Corfu, a Greek Orthodox society uninfluenced by the Ottoman Islamic Culture. The paper aims to deepen our understanding of the evil eye as it analyses the interaction between the evil eye and gaze and how they affect the development of personhood; based on the empirical data collected from the fieldwork. Therefore, the paper adopts a psychoanalytic anthropology approach to facilitate a better understanding of the evil eye through the accounts of individuals’ journeys in the process of their development of personhood. Finally, the paper aims to offer a detailed analysis of the particular element of eye (‘I’) and, more specifically, of ‘the others’, as they relate to the phenomenon of the evil eye.Keywords: gaze, evil eye, mental health, personhood
Procedia PDF Downloads 1317726 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 4427725 Power of Doubling: Population Growth and Resource Consumption
Authors: Sarika Bahadure
Abstract:
Sustainability starts with conserving resources for future generations. Since human’s existence on this earth, he has been consuming natural resources. The resource consumption pace in the past was very slow, but industrialization in 18th century brought a change in the human lifestyle. New inventions and discoveries upgraded the human workforce to machines. The mass manufacture of goods provided easy access to products. In the last few decades, the globalization and change in technologies brought consumer oriented market. The consumption of resources has increased at a very high scale. This overconsumption pattern brought economic boom and provided multiple opportunities, but it also put stress on the natural resources. This paper tries to put forth the facts and figures of the population growth and consumption of resources with examples. This is explained with the help of the mathematical expression of doubling known as exponential growth. It compares the carrying capacity of the earth and resource consumption of humans’ i.e. ecological footprint and bio-capacity. Further, it presents the need to conserve natural resources and re-examine sustainable resource use approach for sustainability.Keywords: consumption, exponential growth, population, resources, sustainability
Procedia PDF Downloads 2337724 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach
Authors: Chen-Yin Kuo, Yung-Hsin Lee
Abstract:
Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy
Procedia PDF Downloads 3217723 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 1667722 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects
Authors: Ayedh Alqahtani, Andrew Whyte
Abstract:
Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.Keywords: building projects, capital cost, life cycle cost, maintenance costs, operation costs
Procedia PDF Downloads 5507721 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 1607720 Strategic Smart-City Projects and the Economic Impact of Prioritizing around Public Facilities: Case Study of Birnin Kebbi, Nigeria
Authors: Abdullateef Abdulkarim Jimoh, Muhammad Lawal A., Usman Muhammad, Hamisu Abdullahi, Nuhu Abdullahi Jega
Abstract:
Smart city projects can be aided by urban development policies in public facilities, but economic resources to finance urban system reorganization is an issue to various governments. This is further compounded with the impact of the slowing down of national economies. The aim of this paper is to emphasize the need to prioritize the economic benefits of smart city projects and, specifically, in towns transforming into cities like Birnin kebbi. The smart-city projects can aim at developing a new form of ‘‘modernity and civilization’’ of the productive economy. This study adopts the descriptive statistical approach to identify the key performance indicators (KPI) for tracking the progress of cities and its developmental objectives. It has been established that numerous aspects of the modernization policies can enhance the competitiveness of territories, particular in aspects of social cohesion, the diffusion of knowledge, creativity, accessibility, etc.Keywords: economy, economic policy, public facilities, smart city, urbanization
Procedia PDF Downloads 1177719 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids
Authors: A. Giniatoulline
Abstract:
We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations
Procedia PDF Downloads 2627718 Designing Next Generation Platforms for Recombinant Protein Production by Genome Engineering of Escherichia coli
Authors: Priyanka Jain, Ashish K. Sharma, Esha Shukla, K. J. Mukherjee
Abstract:
We propose a paradigm shift in our approach to design improved platforms for recombinant protein production, by addressing system level issues rather than the individual steps associated with recombinant protein synthesis like transcription, translation, etc. We demonstrate that by controlling and modulating the cellular stress response (CSR), which is responsible for feedback control of protein synthesis, we can generate hyper-producing strains. We did transcriptomic profiling of post-induction cultures, expressing different types of protein, to analyze the nature of this cellular stress response. We found significant down-regulation of substrate utilization, translation, and energy metabolism genes due to generation CSR inside the host cell. However, transcription profiling has also shown that many genes are up-regulated post induction and their role in modulating the CSR is unclear. We hypothesized that these up-regulated genes trigger signaling pathways, generating the CSR and concomitantly reduce the recombinant protein yield. To test this hypothesis, we knocked out the up-regulated genes, which did not have any downstream regulatees, and analyzed their impact on cellular health and recombinant protein expression. Two model proteins i.e., GFP and L-Asparaginase were chosen for this analysis. We observed a significant improvement in expression levels, with some knock-outs showing more than 7-fold higher expression compared to control. The 10 best single knock-outs were chosen to make 45 combinations of all possible double knock-outs. A further increase in expression was observed in some of these double knock- outs with GFP levels being highest in a double knock-out ΔyhbC + ΔelaA. However, for L-Asparaginase which is a secretory protein, the best results were obtained using a combination of ΔelaA+ΔcysW knock-outs. We then tested all the knock outs for their ability to enhance the expression of a 'difficult-to-express' protein. The Rubella virus E1 protein was chosen and tagged with sfGFP at the C-terminal using a linker peptide for easy online monitoring of expression of this fusion protein. Interestingly, the highest increase in Rubella-sGFP levels was obtained in the same double knock-out ΔelaA + ΔcysW (5.6 fold increase in expression yield compared to the control) which gave the highest expression for L-Asparaginase. However, for sfGFP alone, the ΔyhbC+ΔmarR knock-out gave the highest level of expression. These results indicate that there is a fair degree of commonality in the nature of the CSR generated by the induction of different proteins. Transcriptomic profiling of the double knock out showed that many genes associated with the translational machinery and energy biosynthesis did not get down-regulated post induction, unlike the control where these genes were significantly down-regulated. This confirmed our hypothesis of these genes playing an important role in the generation of the CSR and allowed us to design a strategy for making better expression hosts by simply knocking out key genes. This strategy is radically superior to the previous approach of individually up-regulating critical genes since it blocks the mounting of the CSR thus preventing the down-regulation of a very large number of genes responsible for sustaining the flux through the recombinant protein production pathway.Keywords: cellular stress response, GFP, knock-outs, up-regulated genes
Procedia PDF Downloads 2317717 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 247716 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication
Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan
Abstract:
We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers
Procedia PDF Downloads 1627715 The City Ecological Corridor Construction Based on the Concept Of "Sponge City"(Case Study: Lishui)
Authors: Xu Mengyuan, Xu Lei
Abstract:
Behind the rapid development of Chinese city, the contradiction of frequent urban waterlogging and the shortage of water resources is deepening. In order to solve this problem, introduce the low impact development "sponge city" construction mode in the process of the construction of new urbanization in China, make our city " resilience to adapt" environmental change and natural disaster. Firstly this paper analyses the basic reason of urban waterlogging, then introduces the basic connotation and realization approach of “sponge city”. Finally, study on the project in Lishui Guazhou, focuses on the analysis of the "urban ecological corridor" construction strategy and the positive impact on city in the construction of “sponge city”. Meanwhile, we put forward the ”local conditions” and ”sustainable” as the construction ideas, make use of ecological construction leading city development, explore the ecological balance through the city to enhance the regional value, and providing reference and reflection for the development and future of the “sponge city” in China.Keywords: urban water logging, sponge city, urban ecological corridor, sustainable development, China
Procedia PDF Downloads 6437714 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 6207713 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 2097712 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering
Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli
Abstract:
Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model
Procedia PDF Downloads 5187711 Biofeedback-Driven Sound and Image Generation
Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez
Abstract:
BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology
Procedia PDF Downloads 76