Search results for: energy law
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8391

Search results for: energy law

1761 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 142
1760 Status of Production, Distribution and Determinants of Biomass Briquette Acceptability in Kampala, Uganda

Authors: David B. Kisakye, Paul Mugabi

Abstract:

Biomass briquettes have been identified as a plausible and close alternative to commonly used energy fuels such as charcoal and firewood, whose prices are escalating due to the dwindling natural resource base. However, briquettes do not seem to be as popular as would be expected. This study assessed the production, distribution, and acceptability of the briquettes in the Kampala district. A total of 60 respondents, 50 of whom were briquette users and 10 briquette producers, were sampled from five divisions of Kampala district to evaluate consumer acceptability, preference for briquette type and shape. Households and institutions were identified to be the major consumers of briquettes, while community-based organizations were the major distributors of briquettes. The Chi-square test of independence showed a significant association between briquette acceptability and briquette attributes of substitutability and low cost (p < 0,05). The Kruskal Wallis test showed that low-income class people preferred non-carbonized briquettes. Gender, marital status, and income level also cause variation in preference for spherical, stick, and honeycomb briquettes (p < 0,05). The major challenges faced by briquette users in Kampala were; production of a lot of ash, frequent crushing, and limited access to briquettes. The producers of briquettes were mainly challenged by regular machine breakdown, raw material scarcity, and poor carbonizing units. It was concluded that briquettes have a market and are generally accepted in Kampala. However, user preferences need to be taken into account by briquette produces, suitable cookstoves should be availed to users, and there is a need for standards to ensure the quality of briquettes.

Keywords: consumer acceptability, biomass residues, briquettes, briquette producers, distribution, fuel, marketability, wood fuel

Procedia PDF Downloads 143
1759 Identification of Membrane Foulants in Direct Contact Membrane Distillation for the Treatment of Reject Brine

Authors: Shefaa Mansour, Hassan Arafat, Shadi Hasan

Abstract:

Management of reverse osmosis (RO) brine has become a major area of research due to the environmental concerns associated with it. This study worked on studying the feasibility of the direct contact membrane distillation (DCMD) system in the treatment of this RO brine. The system displayed great potential in terms of its flux and salt rejection, where different operating conditions such as the feed temperature, feed salinity, feed and permeate flow rates were varied. The highest flux of 16.7 LMH was reported with a salt rejection of 99.5%. Although the DCMD has displayed potential of enhanced water recovery from highly saline solutions, one of the major drawbacks associated with the operation is the fouling of the membranes which impairs the system performance. An operational run of 77 hours for the treatment of RO brine of 56,500 ppm salinity was performed in order to investigate the impact of fouling of the membrane on the overall operation of the system over long time operations. Over this time period, the flux was observed to have reduced by four times its initial flux. The fouled membrane was characterized through different techniques for the identification of the organic and inorganic foulants that have deposited on the membrane surface. The Infrared Spectroscopy method (IR) was used to identify the organic foulants where SEM images displayed the surface characteristics of the membrane. As for the inorganic foulants, they were identified using X-ray Diffraction (XRD), Ion Chromatography (IC) and Energy Dispersive Spectroscopy (EDS). The major foulants found on the surface of the membrane were inorganic salts such as sodium chloride and calcium sulfate.

Keywords: brine treatment, membrane distillation, fouling, characterization

Procedia PDF Downloads 436
1758 Developing a Framework to Aid Sustainable Assessment in Indian Buildings

Authors: P. Amarnath, Albert Thomas

Abstract:

Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.

Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings

Procedia PDF Downloads 138
1757 The Impact of Coffee Consumption to Body Mass Index and Body Composition

Authors: A.L. Tamm, N. Šott, J. Jürimäe, E. Lätt, A. Orav, Ü. Parm

Abstract:

Coffee is one of the most frequently consumed beverages in the world but still its effects on human organism are not completely understood. Coffee has also been used as a method for weight loss, but its effectiveness has not been proved. There is also not similar comprehension in classifying overweight in choosing between body mass index (BMI) and fat percentage (fat%). The aim of the study was to determine associations between coffee consumption and body composition. Secondly, to detect which measure (BMI or fat%) is more accurate to use describing overweight. Altogether 103 persons enrolled the study and divided into three groups: coffee non-consumers (n=39), average coffee drinkers, who consumed 1 to 4 cups (1 cup = ca 200ml) of coffee per day (n=40) and excessive coffee consumers, who drank at least five cups of coffee per day (n=24). Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). Participants´ body composition was detected with dual energy X-ray absorptiometry (DXA, Hologic) and general data (history of chronic diseases included) and information about coffee consumption, and physical activity level was collected with questionnaires. Results of the study showed that excessive coffee consumption was associated with increased fat-free mass. It could be foremost due to greater physical activity level in school time or greater (not significant) male proportion in excessive coffee consumers group. For estimating the overweight the fat% in comparison to BMI recommended, as it gives more accurate results evaluating chronical disease risks. In conclusion coffee consumption probably does not affect body composition and for estimating the body composition fat% seems to be more accurate compared with BMI.

Keywords: body composition, body fat percentage, body mass index, coffee consumption

Procedia PDF Downloads 420
1756 Sustainable Production of Tin Oxide Nanoparticles: Exploring Synthesis Techniques, Formation Mechanisms, and Versatile Applications

Authors: Yemane Tadesse Gebreslassie, Henok Gidey Gebretnsae

Abstract:

Nanotechnology has emerged as a highly promising field of research with wide-ranging applications across various scientific disciplines. In recent years, tin oxide has garnered significant attention due to its intriguing properties, particularly when synthesized in the nanoscale range. While numerous physical and chemical methods exist for producing tin oxide nanoparticles, these approaches tend to be costly, energy-intensive, and involve the use of toxic chemicals. Given the growing concerns regarding human health and environmental impact, there has been a shift towards developing cost-effective and environmentally friendly processes for tin oxide nanoparticle synthesis. Green synthesis methods utilizing biological entities such as plant extracts, bacteria, and natural biomolecules have shown promise in successfully producing tin oxide nanoparticles. However, scaling up the production to an industrial level using green synthesis approaches remains challenging due to the complexity of biological substrates, which hinders the elucidation of reaction mechanisms and formation processes. Thus, this review aims to provide an overview of the various sources of biological entities and methodologies employed in the green synthesis of tin oxide nanoparticles, as well as their impact on nanoparticle properties. Furthermore, this research delves into the strides made in comprehending the mechanisms behind the formation of nanoparticles as documented in existing literature. It also sheds light on the array of analytical techniques employed to investigate and elucidate the characteristics of these minuscule particles.

Keywords: nanotechnology, tin oxide, green synthesis, formation mechanisms

Procedia PDF Downloads 54
1755 Application of Sustainable Agriculture Based on LEISA in Landscape Design of Integrated Farming

Authors: Eduwin Eko Franjaya, Andi Gunawan, Wahju Qamara Mugnisjah

Abstract:

Sustainable agriculture in the form of integrated farming with its LEISA (Low External Input Sustainable Agriculture) concept has brought a positive impact on agriculture development and ambient amelioration. But, most of the small farmers in Indonesia did not know how to put the concept of it and how to combine agricultural commodities on the site effectively and efficiently. This research has an aim to promote integrated farming (agrofisheries, etc) to the farmers by designing the agricultural landscape to become integrated farming landscape as medium of education for the farmers. The method used in this research is closely related with the rule of design in the landscape architecture science. The first step is inventarization for the existing condition on the research site. The second step is analysis. Then, the third step is concept-making that consists of base concept, design concept, and developing concept. The base concept used in this research is sustainable agriculture with LEISA. The concept design is related with activity base on site. The developing concept consists of space concept, circulation, vegetation and commodity, production system, etc. The fourth step as the final step is planning and design. This step produces site plan of integrated farming based on LEISA. The result of this research is site plan of integrated farming with its explanation, including the energy flow of integrated farming system on site and the production calendar of integrated farming commodities for education and agri-tourism opportunity. This research become the right way to promote the integrated farming and also as a medium for the farmers to learn and to develop it.

Keywords: integrated farming, LEISA, planning and design, site plan

Procedia PDF Downloads 512
1754 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 56
1753 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED

Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae

Abstract:

Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.

Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device

Procedia PDF Downloads 750
1752 Research on the Efficiency and Driving Elements of Manufacturing Transformation and Upgrading in the Context of Digitization

Authors: Chen Zhang; Qiang Wang

Abstract:

With the rapid development of the new generation of digital technology, various industries have created more and more value by using digital technology, accelerating the digital transformation of various industries. The economic form of human society has evolved with the progress of technology, and in this context, the power conversion, transformation and upgrading of the manufacturing industry in terms of quality, efficiency and energy change has become a top priority. Based on the digitalization background, this paper analyzes the transformation and upgrading efficiency of the manufacturing industry and evaluates the impact of the driving factors, which have very important theoretical and practical significance. This paper utilizes qualitative research methods, entropy methods, data envelopment analysis methods and econometric models to explore the transformation and upgrading efficiency of manufacturing enterprises and driving factors. The study shows that the transformation and upgrading efficiency of the manufacturing industry shows a steady increase, and regions rich in natural resources and social resources provide certain resources for transformation and upgrading. The ability of scientific and technological innovation has been improved, but there is still much room for progress in the transformation of scientific and technological innovation achievements. Most manufacturing industries pay more attention to green manufacturing and sustainable development. In addition, based on the existing problems, this paper puts forward suggestions for improving infrastructure construction, developing the technological innovation capacity of enterprises, green production and sustainable development.

Keywords: digitization, manufacturing firms, transformation and upgrading, efficiency, driving factors

Procedia PDF Downloads 66
1751 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium

Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah

Abstract:

Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).

Keywords: corrosion, green inhibitor, nanoparticles, zinc

Procedia PDF Downloads 454
1750 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 67
1749 There's No End in Sight: An Interpretative Phenomenological Analysis of Quality of Life in Burning Syndrome Sufferers

Authors: R. McGrath, A. Trace, S. Curtin, C. McCreary

Abstract:

Introduction: Although, in relation to Burning Mouth Syndrome (BMS), much energy has been expended on its definition and etiology, it still remains a contentious issue. There is agreement on the symptoms, but on little else; and approaches to treatment vary widely. However, it has been established that the condition has a detrimental effect on the sufferer’s quality of life. Much research focus has been put on the physical impact of the syndrome. Recently, some literature has turned the focus to social, functional, and psychological factors. However, there is very little qualitative research on how burning mouth syndrome affects the lives of sufferer’s and the present study seeks to remedy this. Method: The study recruited five male participants who took part in semi-structured interviews lasting between 30 and 50 minutes. Data was analysed using Interpretative Phenomenological Analysis. Results: The study identified four super-ordinate themes: Lack of Control due to Uncertainty about Condition; Disruption to Internal Sense of Self; Negative Future Expectation due to Chronic Symptoms; and Sense of BMS as an Intrusive Force. Aspects of these themes reflect areas of reduction in quality of life. Conclusion: BMS damages an individual’s quality of life in ways that have not been reflected in self-report surveys of health-related quality of life. The condition has serious implications for the individual's sense of self, identity, and future. The study recommends that further qualitative research be carried out in this area. Also, the use of therapeutic interventions with sufferers from BMS is recommended, which would help not only sufferers but best practice in relation to their treatment.

Keywords: burning mouth syndrome, interpretative phenomenological analysis, qualitative research, quality of life

Procedia PDF Downloads 441
1748 Internet of Things for Smart Dedicated Outdoor Air System in Buildings

Authors: Dararat Tongdee, Surapong Chirarattananon, Somchai Maneewan, Chantana Punlek

Abstract:

Recently, the Internet of Things (IoT) is the important technology that connects devices to the network and people can access real-time communication. This technology is used to report, collect, and analyze the big data for achieving a purpose. For a smart building, there are many IoT technologies that enable management and building operators to improve occupant thermal comfort, indoor air quality, and building energy efficiency. In this research, we propose monitoring and controlling performance of a smart dedicated outdoor air system (SDOAS) based on IoT platform. The SDOAS was specifically designed with the desiccant unit and thermoelectric module. The designed system was intended to monitor, notify, and control indoor environmental factors such as temperature, humidity, and carbon dioxide (CO₂) level. The SDOAS was tested under the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 62.2) and indoor air quality standard. The system will notify the user by Blynk notification when the status of the building is uncomfortable or tolerable limits are reached according to the conditions that were set. The user can then control the system via a Blynk application on a smartphone. The experimental result indicates that the temperature and humidity of indoor fresh air in the comfort zone are approximately 26 degree Celsius and 58% respectively. Furthermore, the CO₂ level was controlled lower than 1000 ppm by indoor air quality standard condition. Therefore, the proposed system can efficiently work and be easy to use for buildings.

Keywords: internet of things, indoor air quality, smart dedicated outdoor air system, thermal comfort

Procedia PDF Downloads 199
1747 Driver Take-Over Time When Resuming Control from Highly Automated Driving in Truck Platooning Scenarios

Authors: Bo Zhang, Ellen S. Wilschut, Dehlia M. C. Willemsen, Marieke H. Martens

Abstract:

With the rapid development of intelligent transportation systems, automated platooning of trucks is drawing increasing interest for its beneficial effects on safety, energy consumption and traffic flow efficiency. Nevertheless, one major challenge lies in the safe transition of control from the automated system back to the human drivers, especially when they have been inattentive after a long period of highly automated driving. In this study, we investigated driver take-over time after a system initiated request to leave the platooning system Virtual Tow Bar in a non-critical scenario. 22 professional truck drivers participated in the truck driving simulator experiment, and each was instructed to drive under three experimental conditions before the presentation of the take-over request (TOR): driver ready (drivers were instructed to monitor the road constantly), driver not-ready (drivers were provided with a tablet) and eye-shut. The results showed significantly longer take-over time in both driver not-ready and eye-shut conditions compared with the driver ready condition. Further analysis revealed hand movement time as the main factor causing long response time in the driver not-ready condition, while in the eye-shut condition, gaze reaction time also influenced the total take-over time largely. In addition to comparing the means, large individual differences can be found especially in two driver, not attentive conditions. The importance of a personalized driver readiness predictor for a safe transition is concluded.

Keywords: driving simulation, highly automated driving, take-over time, transition of control, truck platooning

Procedia PDF Downloads 253
1746 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water

Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam

Abstract:

In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.

Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria

Procedia PDF Downloads 248
1745 Multi-Objective Optimization of Intersections

Authors: Xiang Li, Jian-Qiao Sun

Abstract:

As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.

Keywords: cellular automata, intersection, multi-objective optimization, traffic system

Procedia PDF Downloads 580
1744 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 256
1743 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 77
1742 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5×37.5 mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15- 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68℃ when the heat input was at 40 W which is much lower than the recommended computer chips limit temperature of no more than 85℃ and hence the performance of the CPU is enhanced.

Keywords: chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid

Procedia PDF Downloads 265
1741 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 339
1740 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 186
1739 Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: research and development, technology and innovation, lithium-ion-battery production, load carrier development process, cost valuation method

Procedia PDF Downloads 594
1738 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 192
1737 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack

Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su

Abstract:

The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.

Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier

Procedia PDF Downloads 307
1736 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow

Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi

Abstract:

Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.

Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation

Procedia PDF Downloads 156
1735 Theoretical Investigation of the Singlet and Triplet Electronic States of ⁹⁰ZrS Molecules

Authors: Makhlouf Sandy, Adem Ziad, Taher Fadia, Magnier Sylvie

Abstract:

The electronic structure of 90ZrS has been investigated using Ab-initio methods based on Complete Active Space Self Consistent Field and Multi-reference Configuration Interaction (CASSCF/MRCI). The number of predicted states has been extended to 14 singlet and 12 triplet lowest-lying states situated below 36000cm-1. The equilibrium energies of these 26 lowest-lying electronic states have been calculated in the 2S+1Λ(±) representation. The potential energy curves have been plotted in function of the inter-nuclear distances in a range of 1.5 to 4.5Å. Spectroscopic constants, permanent electric dipole moments and transition dipole moments between the different electronic states have also been determined. A discrepancy error of utmost 5% for the majority of values shows a good agreement with available experimental data. The ground state is found to be of symmetry X1Σ+ with an equilibrium inter-nuclear distance Re= 2.16Å. However, the (1)3Δ is the closest state to X1Σ+ and is situated at 514 cm-1. To the best of our knowledge, this is the first time that the spin-orbit coupling has been investigated for all the predicted states of ZrS. 52 electronic components in the Ω(±) representation have been predicted. The energies of these components, the spectroscopic constants ωe, ωeχe, βe and the equilibrium inter-nuclear distances have been also obtained. The percentage composition of the Ω state wave-functions in terms of S-Λ states was calculated to identify their corresponding main parents. These (SOC) calculations have determined the shift between (1)3Δ1 and X1Σ+ states and confirmed the ground state type being 1Σ+.

Keywords: CASSCF/MRCI, electronic structure, spin-orbit effect, zirconium monosulfide

Procedia PDF Downloads 168
1734 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange

Authors: Akeel Noori Almulla Hwaish

Abstract:

Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.

Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange

Procedia PDF Downloads 475
1733 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill

Procedia PDF Downloads 292
1732 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte

Procedia PDF Downloads 426