Search results for: ERA-5 analysis data
35915 A Solution to Analyze the Geosynthetic Reinforced Piled Embankments Considering Pile-Soil Interaction
Authors: Feicheng Liu, Weiming Liao, Jianjing Zhang
Abstract:
A pile-supported embankment with geosynthetic-reinforced mat (PSGR embankment) has been considered as an effective solution to reduce the total and differential settlement of the embankment constructed over soft soil. In this paper, a new simplified method proposed firstly incorporates the load transfer between piles and surrounding soil and the settlement of pile, and also considers arching effect in embankment fill, membrane effect of geosynthetic reinforcement, and subsoil resistance, to evaluate the behavior of PSGR embankment. Subsoil settlement is assumed to consist of two parts:(1) the settlement of subsoil surface between piles equivalent to that of pile caps assuming the geosynthetic reinforcement without deformation yet; (2) the subsoil subsiding along with the geosynthetic deforming, and the deflected geosynthetic being considered as centenary. The force equilibrium, including loads acting on the upper surface of geosynthetic, subsoil resistance, as well as the stress-strain relationship of the geosynthetic reinforcement at the edge of pile cap, is established, thus the expression of subsoil resistance is deduced, and subsequently the tension of geosynthetic and stress concentration ratio between piles can be calculated. The proposed method is validated through observed data from three field tests and also compared with other eight analytical solutions available in the literature. In addition, a sensitive analysis is provided to demonstrate the influence of with/without considering pile-soil interaction for evaluating the performance of PSGR embankment.Keywords: pile-supported embankment, geosynthetic, analytical solution, soil arching effect, the settlement of pile, sensitive analysis
Procedia PDF Downloads 15835914 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone
Authors: Marju Ben Sayed, Shigeko Haruyama
Abstract:
Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood
Procedia PDF Downloads 30135913 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 3535912 Flipped Classrooms 3.0: An Investigation of Students’ Speaking Performance and Learning Engagement
Authors: I Putu Indra Kusuma
Abstract:
The rapid development of Information and Communication Technology (ICT) tools has improved the implementation of flipped classrooms in English Language Teaching (ELT), especially in speaking course. Flipped classrooms have therefore evolved from the oldest version, which uses recorded videos to the newest one (3.0 version), which combines various materials and enables out-of-class interaction and learning engagement. However, how the latest version of flipped classrooms affects students’ speaking performance and influences students’ learning engagement remains unclear. This study therefore sought (1) to examine the effect of flipped classrooms 3.0 towards students’ speaking performance and (2) to explore the students’ learning engagement during the implementation of flipped classrooms in the speaking course. This study then employed explanatory sequential mixed-method design. This study conducted a quasi-experimental study by recruiting 164 twelfth grade students of a public senior high school in Indonesia as the sample. They were distributed into experimental (80 students) and control (84 students) groups. The experimental group was treated by implementing flipped classrooms with various use of ICT tools such as Schoology, Youtube, websites, and Flipgrid for eight weeks. Meanwhile, the control group implemented a conventional method. Furthermore, there were two variables examined in this study, such as the implementation of flipped classrooms 3.0 as the independent variable and students’ speaking performance as the dependent variable. The data of these two variables were then collected through administering a speaking test to both groups. The data from this experimental study were analyzed by using independent t-test analysis. Also, five students were invited to participate in semi-structured interviews to explore their learning engagement during the implementation of flipped classrooms. The findings revealed that there was a significant difference in students’ speaking performance between experimental where t (df = 162) = 5.810, p < 0.001, d = 0.91 in which experimental group performed better in speaking than the control group. Also, the results of interviews showed that the students had positive learning engagement during the implementation of flipped classrooms 3.0, especially on out-of-class interactions and face-to-face meetings. Some relevant implications to ELT, especially in speaking courses, are also drawn from the data findings. From the findings, it can be concluded that flipped classrooms 3.0 has a significant effect on students’ speaking performance and it promotes students’ learning engagement. Therefore, flipped classrooms 3.0 should be embraced as the newest version of flipped classrooms that promotes interaction outside the classrooms and learning engagement.Keywords: Flipped Classrooms 3.0, learning engagement, teaching speaking with technology, technology-enhanced language learning
Procedia PDF Downloads 13635911 Hydro-Meteorological Vulnerability and Planning in Urban Area: The Case of Yaoundé City in Cameroon
Authors: Ouabo Emmanuel Romaric, Amougou Armathe
Abstract:
Background and aim: The study of impacts of floods and landslides at a small scale, specifically in the urban areas of developing countries is done to provide tools and actors for a better management of risks in such areas, which are now being affected by climate change. The main objective of this study is to assess the hydrometeorological vulnerabilities associated with flooding and urban landslides to propose adaptation measures. Methods: Climatic data analyses were done by calculation of indices of climate change within 50 years (1960-2012). Analyses of field data to determine causes, the level of risk and its consequences on the area of study was carried out using SPSS 18 software. The cartographic analysis and GIS were used to refine the work in space. Then, spatial and terrain analyses were carried out to determine the morphology of field in relation with floods and landslide, and the diffusion on the field. Results: The interannual changes in precipitation has highlighted the surplus years (21), the deficit years (24) and normal years (7). Barakat method bring out evolution of precipitation by jerks and jumps. Floods and landslides are correlated to high precipitation during surplus and normal years. Data field analyses show that populations are conscious (78%) of the risks with 74% of them exposed, but their capacities of adaptation is very low (51%). Floods are the main risk. The soils are classed as feralitic (80%), hydromorphic (15%) and raw mineral (5%). Slope variation (5% to 15%) of small hills and deep valley with anarchic construction favor flood and landslide during heavy precipitation. Mismanagement of waste produce blocks free circulation of river and accentuate floods. Conclusion: Vulnerability of population to hydrometeorological risks in Yaoundé VI is the combination of variation of parameters like precipitation, temperature due to climate change, and the bad planning of construction in urban areas. Because of lack of channels for water to circulate due to saturation of soils, the increase of heavy precipitation and mismanagement of waste, the result are floods and landslides which causes many damages on goods and people.Keywords: climate change, floods, hydrometeorological, vulnerability
Procedia PDF Downloads 47035910 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 60735909 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 12535908 Reading Literacy, Storytelling and Cognitive Learning: an Effective Connection in Sustainability Education
Authors: Rosa Tiziana Bruno
Abstract:
The connection between education and sustainability has been posited to have benefit for realizing a social development compatible with environmental protection. However, an educational paradigm based on the passage of information or on the fear of a catastrophe might not favor the acquisition of eco-identity. To build a sustainable world, it is necessary to "become people" in harmony with other human beings, being aware of belonging to the same human community that is part of the natural world. This can only be achieved within an authentic educating community and the most effective tools for building educating communities are reading literacy and storytelling. This paper is the report of a research-action carried out in this direction, in agreement with the sociology department of the University of Salerno, which involved four hundred children and their teachers in a path based on the combination of reading literacy, storytelling, autobiographical writing and outdoor education. The goal of the research was to create an authentic educational community within the school, capable to encourage the acquisition of an eco-identity by the pupils, that is, personal and relational growth in the full realization of the Self, in harmony with the social and natural environment, with a view to an authentic education for sustainability. To ensure reasonable validity and reliability of findings, the inquiry started with participant observation and a process of triangulation has been used including: semi-structured interview, socio-semiotic analysis of the conversation and time budget. Basically, a multiple independent sources of data was used to answer the questions. Observing the phenomenon through multiple "windows" helped to comparing data through a variety of lenses. All teachers had the experience of implementing a socio-didactic strategy called "Fiabadiario" and they had the possibility to use it with approaches that fit their students. The data being collected come from the very students and teachers who are engaged with this strategy. The educational path tested during the research has produced sustainable relationships and conflict resolution within the school system and between school and families, creating an authentic and sustainable learning community.Keywords: educating community, education for sustainability, literature in education, social relations
Procedia PDF Downloads 12435907 The Analysis of Competitive Balance Progress among Five Most Valuable Football Leagues from 1966 to 2015
Authors: Seyed Salahedin Naghshbandi, Zahra Bozorgzadeh, Leila Zakizadeh, Siavash Hamidzadeh
Abstract:
From the sport economy experts point of view, the existence of competitive balance among sport leagues and its numerous effects on league is an important and undeniable issue. In general, sport events fans are so eager to unpredictable results of competition in order to reach the top of excitement and necessary motivation for following competitions. The purpose of this research is to consider and compare the competitive balance among five provisional European football leagues (Spain, England, Italy, France and Germany) during 1966 - 2015 seasons. Research data are secondary and obtained from Premier League final tables of selected countries in 1966 - 2015 seasons. For analyzing data, C5 and C5ICB indicators used. whatever these indicators be less, more balance establishes in the league and vice-versa. The result showed that Le champion of France reached from 1,259 to 1,395; Italy Serie-A league from 1,316 to 1,432; England premier league from 1, 342 to 1,455; Germany Bundesliga from 1,238 to 1,465 and Spain La liga from 1,295 to 1,495. So by comparing C5ICB charts during 1966 - 2015 seasons, La liga of Spain moved more toward imbalance and enjoyed less balance with other European Leagues. Also, La champion of France during the mentioned season, enjoyed less imbalance and preserved its relative balance with monotonous process. It seems that football in France has been followed as stable during 1966 to 2015, and prediction of results was more difficult and competitions were so attractive for spectators, but in Italy, England, Germany, and Spain there were less balance, respectively.Keywords: competitive balance, professional football league, competition, C5ICB
Procedia PDF Downloads 14735906 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 29535905 Optical Variability of Faint Quasars
Authors: Kassa Endalamaw Rewnu
Abstract:
The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.Keywords: nuclear activity, galaxies, active quasars, variability
Procedia PDF Downloads 8835904 Frontal Oscillatory Activity and Phase–Amplitude Coupling during Chan Meditation
Authors: Arthur C. Tsai, Chii-Shyang Kuo, Vincent S. C. Chien, Michelle Liou, Philip E. Cheng
Abstract:
Meditation enhances mental abilities and it is an antidote to anxiety. However, very little is known about brain mechanisms and cortico-subcortical interactions underlying meditation-induced anxiety relief. In this study, the changes of phase-amplitude coupling (PAC) in which the amplitude of the beta frequency band were modulated in phase with delta rhythm were investigated after eight-week of meditation training. The study hypothesized that through a concentrate but relaxed mental training the delta-beta coupling in the frontal regions is attenuated. The delta-beta coupling analysis was applied to within and between maximally-independent component sources returned from the extended infomax independent components analysis (ICA) algorithm on the continuous EEG data during mediation. A unique meditative concentration task through relaxing body and mind was used with a constant level of moderate mental effort, so as to approach an ‘emptiness’ meditative state. A pre-test/post-test control group design was used in this study. To evaluate cross-frequency phase-amplitude coupling of component sources, the modulation index (MI) with statistics to calculate circular phase statistics were estimated. Our findings reveal that a significant delta-beta decoupling was observed in a set of frontal regions bilaterally. In addition, beta frequency band of prefrontal component were amplitude modulated in phase with the delta rhythm of medial frontal component.Keywords: phase-amplitude coupling, ICA, meditation, EEG
Procedia PDF Downloads 43135903 Petrology Investigation of Apatite Minerals in the Esfordi Mine
Authors: Haleh Rezaei Zanjirabadi, Fatemeh Saberi, Bahman Rahimzadeh, Fariborz Masoudi, Mohammad Rahgosha
Abstract:
In this study, apatite minerals from the iron-phosphate deposit of Yazd have been investigated within the microcontinent zone of Iran in the Zagros structural zone. The geological units in the Esfordi area belong to the pre-Cambrian to lower-Cambrian age, consisting of a succession of carbonate rocks (dolomite), shale, tuff, sandstone, and volcanic rocks. In addition to the mentioned sedimentary and volcanic rocks, the granitoid mass of Bahabad, which is the largest intrusive mass in the region, has intruded into the eastern part of this series and has caused its metamorphism and alteration. After collecting the available data, various samples of Esfordi’s apatite were prepared, and their mineralogy and crystallography were investigated using laboratory methods such as petrographic microscopy, Raman spectroscopy, EDS, and SEM. In non-destructive Raman spectroscopy, the molecular structure of apatite minerals was revealed in four distinct spectral ranges. Initially, the spectra of phosphate and aluminum bonds with O2HO, OH, were observed, followed by the identification of Cl, OH, Al, Na, Ca and hydroxyl units depending on the type of apatite mineral family. In SEM analysis, based on various shapes and different phases of apatites, their constituent major elements were identified through EDS, indicating that the samples from the Esfordi mining area exhibit a dense and coherent texture with smooth surfaces. Based on the elemental analysis results by EDS, the apatites in the Esfordi area are classified into the calcic apatite group.Keywords: petrology, apatite, Esfordi, EDS, SEM, Raman spectroscopy
Procedia PDF Downloads 6935902 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 8735901 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 19735900 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices
Authors: Amer Ait Sidhoum
Abstract:
Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming
Procedia PDF Downloads 13135899 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate
Authors: Chia-Ling Li
Abstract:
The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.Keywords: economic analysis, hydrogenation, non-phthalate, process simulation
Procedia PDF Downloads 27835898 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 8235897 Patterns of Private Transfers in the Philippines: An Analysis of Who Gives and Receives More
Authors: Rutcher M. Lacaza, Stephen Jun V. Villejo
Abstract:
This paper investigated the patterns of private transfers in the Philippines using the Family Income Expenditure Survey (FIES) 2009, conducted by the Philippine government’s National Statistics Office (NSO) every three years. The paper performed bivariate analysis on net transfers, using the identified determinants for a household to be either a net receiver or a net giver. The household characteristics considered are the following: age, sex, marital status, employment status and educational attainment of the household head, and also size, location, pre-transfer income and the number of employed members of the household. The variables net receiver and net giver are determined by computing the net transfer, subtracting total gifts from total receipts. The receipts are defined as the sum of cash received from abroad, cash received from domestic sources, total gifts received and inheritance. While gifts are defined as the sum of contributions and donations to church and other religious institutions, contributions and donations to other institutions, gifts and contributions to others, and gifts and assistance to private individuals outside the family. Both in kind and in cash transfers are considered in the analysis. It also performed a multiple regression analysis on transfers received and income including other household characteristics to examine the motives for giving transfers – whether altruism or exchanged. It also used the binary logistic regression to estimate the probability of being a net receiver or net giver given the household characteristics. The study revealed that receiving tends to be universal – both the non-poor and the poor benefit although the poor receive substantially less than the non-poor. Regardless of whether households are net receivers or net givers, households in the upper deciles generally give and receive more than those in the lower deciles. It also appears that private transfers may just flow within economic groups. Big amounts of transfers are, therefore, directed to the non-poor and the small amounts go to the poor. This was also supported by the increasing function of gross transfers received and the income of households – the poor receiving less and the non-poor receiving more. This is contrary to the theory that private transfers can help equalize the distribution of income. This suggested that private transfers in the Philippines are not altruistically motivated but exchanged. However, bilateral data on transfers received or given is needed to test this theory directly. The results showed that transfers are much needed by the poor and it is important to understand the nature of private transfers, to ensure that government transfer programs are properly designed and targeted so as to prevent the duplication of private safety nets already present among the non-poor.Keywords: private transfers, net receiver, net giver, altruism, exchanged.
Procedia PDF Downloads 21935896 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities
Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia
Abstract:
Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites
Procedia PDF Downloads 16735895 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 4335894 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique
Authors: Mohammad A. Khasawneh
Abstract:
Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure. The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab. Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.Keywords: friction, image analysis, polishing, statistical analysis, texture
Procedia PDF Downloads 30935893 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes
Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi
Abstract:
Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes
Procedia PDF Downloads 40835892 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis
Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik
Abstract:
Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.Keywords: D. strictus, bamboo, neem oil, presure treatment, compressive strength
Procedia PDF Downloads 41335891 Geographic Information System Application for Predicting Tourism Development in Gunungkidul Regency, Indonesia
Authors: Nindyo Cahyo Kresnanto, Muhamad Willdan, Wika Harisa Putri
Abstract:
Gunungkidul is one of the emerging tourism industry areas in Yogyakarta Province, Indonesia. This article describes how GIS can predict the development of tourism potential in Gunungkidul. The tourism sector in Gunungkidul Regency contributes 3.34% of the total gross regional domestic product and is the economic sector with the highest growth with a percentage of 18.37% in the post-Covid-19 period. This contribution makes researchers consider that several tourist sites need to be explored more to increase regional economic development gradually. This research starts by collecting spatial data from tourist locations tourists want to visit in Gunungkidul Regency based on survey data from 571 respondents. Then the data is visualized with ArcGIS software. This research shows an overview of tourist destinations interested in travellers depicted from the lowest to the highest from the data visualization. Based on the data visualization results, specific tourist locations potentially developed to influence the surrounding economy positively. The visualization of the data displayed is also in the form of a desire line map that shows tourist travel patterns from the origin of the tourist to the destination of the tourist location of interest. From the desire line, the prediction of the path of tourist sites with a high frequency of transportation activity can figure out. Predictions regarding specific tourist location routes that high transportation activities can burden can consider which routes will be chosen. The route also needs to be improved in terms of capacity and quality. The goal is to provide a sense of security and comfort for tourists who drive and positively impact the tourist sites traversed by the route.Keywords: tourism development, GIS and survey, transportation, potential desire line
Procedia PDF Downloads 7035890 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers
Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova
Abstract:
Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.Keywords: drama education, preschool education, preschool teacher, research
Procedia PDF Downloads 36735889 Computer Assisted Instructions for a Better Achievement in and Attitude towards Agricultural Economics
Authors: Abiodun Ezekiel Adesina, Alice M. Olagunju
Abstract:
This study determined the effects of Computer Assisted Instructions (CAI) and Academic Self-Concepts (ASC) on pre-service teachers’ achievement in AE concepts in CoE in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Two hundred and thirty-two intact 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to three groups (D&PM, 77, TM, 73 and control, 82). Treatment lasted eight weeks. The AE achievement test (r=0.76), pre-service teachers’ ASC Scale (r=0.81); instructional guides for tutorial (r=0.76), drill and practice (r=0.81) and conventional lecture modes (r=0.83), and teacher performance assessment sheet were used for data collection. Data were analysed using analysis of covariance and Scheffe post-hoc at 0.05 level of significance. The participants were 55.6% female with mean age of 20.8 years. Treatment had significant main effects on pre-service teachers’ achievement (F(2,207)=60.52; η²=0.21; p < 0.05). Participants in D&PM (x̄ =27.83) had the best achievement compared to those in TM (x̄ =25.41) and control (x̄ =18.64) groups. ASC had significant main effect on pre-service teachers’ achievement (F(1,207)=22.011; η²=0.166; p < 0.05). Participants with high ASC (x̄ =27.52) had better achievement compared to those with low ASC (x̄ =22.37). The drill and practice and tutorial instructional modes enhanced students’ achievement in Agricultural Economics concepts. Therefore, the two instructional modes should be adopted for improved learning outcomes in agricultural economics concepts among pre-service teachers.Keywords: achievement in agricultural economics concepts, colleges of education in southwestern Nigeria, computer-assisted instruction, drill and practice instructional mode, tutorial instructional mode
Procedia PDF Downloads 20935888 Factors Associated with Acute Kidney Injury in Multiple Trauma Patients with Rhabdomyolysis
Authors: Yong Hwang, Kang Yeol Suh, Yundeok Jang, Tae Hoon Kim
Abstract:
Introduction: Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. Acute kidney injury is a potential complication of severe rhabdomyolysis and the prognosis is substantially worse if renal failure develops. We try to identify the factors that were predictive of AKI in severe trauma patients with rhabdomyolysis. Methods: This retrospective study was conducted at the emergency department of a level Ⅰ trauma center. Patients enrolled that initial creatine phosphokinase (CPK) levels were higher than 1000 IU with acute multiple trauma, and more than 18 years older from Oct. 2012 to June 2016. We collected demographic data (age, gender, length of hospital day, and patients’ outcome), laboratory data (ABGA, lactate, hemoglobin. hematocrit, platelet, LDH, myoglobin, liver enzyme, and BUN/Cr), and clinical data (Injury Mechanism, RTS, ISS, AIS, and TRISS). The data were compared and analyzed between AKI and Non-AKI group. Statistical analyses were performed using IMB SPSS 20.0 statistics for Window. Results: Three hundred sixty-four patients were enrolled that AKI group were ninety-six and non-AKI group were two hundred sixty-eight. The base excess (HCO3), AST/ALT, LDH, and myoglobin in AKI group were significantly higher than non-AKI group from laboratory data (p ≤ 0.05). The injury severity score (ISS), revised Trauma Score (RTS), Abbreviated Injury Scale 3 and 4 (AIS 3 and 4) were showed significant results in clinical data. The patterns of CPK level were increased from first and second day, but slightly decreased from third day in both group. Seven patients had received hemodialysis treatment despite the bleeding risk and were survived in AKI group. Conclusion: We recommend that HCO3, CPK, LDH, and myoglobin should be checked and be concerned about ISS, RTS, AIS with injury mechanism at the early stage of treatment in the emergency department.Keywords: acute kidney injury, emergencies, multiple trauma, rhabdomyolysis
Procedia PDF Downloads 34235887 Frequency of Consonant Production Errors in Children with Speech Sound Disorder: A Retrospective-Descriptive Study
Authors: Amulya P. Rao, Prathima S., Sreedevi N.
Abstract:
Speech sound disorders (SSD) encompass the major concern in younger population of India with highest prevalence rate among the speech disorders. Children with SSD if not identified and rehabilitated at the earliest, are at risk for academic difficulties. This necessitates early identification using screening tools assessing the frequently misarticulated speech sounds. The literature on frequently misarticulated speech sounds is ample in English and other western languages targeting individuals with various communication disorders. Articulation is language specific, and there are limited studies reporting the same in Kannada, a Dravidian Language. Hence, the present study aimed to identify the frequently misarticulated consonants in Kannada and also to examine the error type. A retrospective, descriptive study was carried out using secondary data analysis of 41 participants (34-phonetic type and 7-phonemic type) with SSD in the age range 3-to 12-years. All the consonants of Kannada were analyzed by considering three words for each speech sound from the Kannada Diagnostic Photo Articulation test (KDPAT). Picture naming task was carried out, and responses were audio recorded. The recorded data were transcribed using IPA 2018 broad transcription. A criterion of 2/3 or 3/3 error productions was set to consider the speech sound to be an error. Number of error productions was calculated for each consonant in each participant. Then, the percentage of participants meeting the criteria were documented for each consonant to identify the frequently misarticulated speech sound. Overall results indicated that velar /k/ (48.78%) and /g/ (43.90%) were frequently misarticulated followed by voiced retroflex /ɖ/ (36.58%) and trill /r/ (36.58%). The lateral retroflex /ɭ/ was misarticulated by 31.70% of the children with SSD. Dentals (/t/, /n/), bilabials (/p/, /b/, /m/) and labiodental /v/ were produced correctly by all the participants. The highly misarticulated velars /k/ and /g/ were frequently substituted by dentals /t/ and /d/ respectively or omitted. Participants with SSD-phonemic type had multiple substitutions for one speech sound whereas, SSD-phonetic type had consistent single sound substitutions. Intra- and inter-judge reliability for 10% of the data using Cronbach’s Alpha revealed good reliability (0.8 ≤ α < 0.9). Analyzing a larger sample by replicating such studies will validate the present study results.Keywords: consonant, frequently misarticulated, Kannada, SSD
Procedia PDF Downloads 15035886 Family, Neighbourhood and Psychosocial Environmental Factors and Their Association with Asthma in Australia: A Systematic Review and Meta-Analysis
Authors: K. M. Shahunja, Peter D. Sly, Tahmina Begum, Tuhin Biswas, Abdullah Mamun
Abstract:
Background: Various associations between different environmental exposures and asthma have been reported in different countries and populations. We aimed to investigate the associations between family, neighbourhood, and psychosocial environmental factors and asthma in Australia by conducting a systematic review and meta-analysis. Methods: We analysed the primary research studies conducted in Australia across multiple databases, including PubMed, EMBASE, and Scopus, and published between 2000 and 2020. The reviews and analyses focused on the overall association of different environmental exposures with the development or exacerbation of asthma symptoms or asthma-related hospital visits. Quality-effect meta-analysis was done to estimate the pooled odds ratio for different environmental exposures for asthma symptoms. Findings: Among the 4,799 unique published articles found, 46 were included here for systematic review and 28 for meta-analysis. Our review found that psychosocial factors, including low socioeconomic condition, maternal depression, mental stress, ethnicity, and discrimination, are associated with asthma symptoms. Pooled analysis was conducted on family and neighbourhood environmental factors and revealed that environmental tobacco smoking (ETS) (OR 1·69, 95% CI 1·19–2.38), synthetic bedding (OR 1·91, 95% CI 1·48–2·47) and gas heaters (OR 1·40, 95% CI 1·12–1·76) had significant overall associations with asthma-symptoms in Australia. Conclusion: Although the studies were heterogeneous, both systematic review and meta-analysis found several psychosocial and family environmental exposures to be significantly associated with asthma symptoms. Further study to identify their causal relationship and modification may reduce asthma symptoms in the Australian population.Keywords: asthma, Australia, environment, systematic review
Procedia PDF Downloads 214