Search results for: signal classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3696

Search results for: signal classification

3066 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
3065 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi

Abstract:

We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 316
3064 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits

Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam

Abstract:

In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.

Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection

Procedia PDF Downloads 442
3063 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.

Keywords: reception power, LTE technology, virtualization, virtual reality, power levels

Procedia PDF Downloads 90
3062 A Methodology for Characterising the Tail Behaviour of a Distribution

Authors: Serge Provost, Yishan Zang

Abstract:

Following a review of various approaches that are utilized for classifying the tail behavior of a distribution, an easily implementable methodology that relies on an arctangent transformation is presented. The classification criterion is actually based on the difference between two specific quantiles of the transformed distribution. The resulting categories enable one to classify distributional tails as distinctly short, short, nearly medium, medium, extended medium and somewhat long, providing that at least two moments exist. Distributions possessing a single moment are said to be long tailed while those failing to have any finite moments are classified as having an extremely long tail. Several illustrative examples will be presented.

Keywords: arctangent transformation, tail classification, heavy-tailed distributions, distributional moments

Procedia PDF Downloads 120
3061 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 160
3060 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
3059 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 379
3058 EGFR Signal Induced-Nuclear Translocation of Beta-catenin and PKM2 Promotes HCC Malignancy and Indicates Early Recurrence After Curative Resection

Authors: Fangtian Fan, Zhaoguo Liu, Yin Lu

Abstract:

Early recurrence (ER) (< 1 year) after liver resection is one of the most important factors that impacts the prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms and predictive indexes of ER after curative resection remain largely unknown. The present study aimed to exploit the role of EGFR signaling in EMT and early recurrence of HCC after curative resection and elucidate the molecular mechanisms. Our results showed that nuclear beta-catenin / PKM2 was a independent predictor of early recurrence after curative resection in EGFR-overexpressed HCC. Mechanistic investigation indicated that nuclear accumulation of beta-catenin and PKM2 induced by EGFR signal promoted HCC cell invasion and proliferation, which were required for early recurrence of HCC. These effects were mediated by PI3K/AKT and ERK pathways rather than the canonical Wnt signaling. In conclusions, EGFR signal induced-nuclear translocation of beta-catenin and PKM2 promotes HCC malignancy and indicates early recurrence after curative resection.

Keywords: beta-catenin, early recurrence, hepatocellular carcinoma, malignancy, PKM2

Procedia PDF Downloads 357
3057 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 83
3056 Classification of Equations of Motion

Authors: Amritpal Singh Nafria, Rohit Sharma, Md. Shami Ansari

Abstract:

Up to now only five different equations of motion can be derived from velocity time graph without needing to know the normal and frictional forces acting at the point of contact. In this paper we obtained all possible requisite conditions to be considering an equation as an equation of motion. After that we classified equations of motion by considering two equations as fundamental kinematical equations of motion and other three as additional kinematical equations of motion. After deriving these five equations of motion, we examine the easiest way of solving a wide variety of useful numerical problems. At the end of the paper, we discussed the importance and educational benefits of classification of equations of motion.

Keywords: velocity-time graph, fundamental equations, additional equations, requisite conditions, importance and educational benefits

Procedia PDF Downloads 787
3055 Classification of Small Towns: Three Methodological Approaches and Their Results

Authors: Jerzy Banski

Abstract:

Small towns represent a key element of settlement structure and serve a number of important functions associated with the servicing of rural areas that surround them. It is in light of this that scientific studies have paid considerable attention to the functional structure of centers of this kind, as well as the relationships with both surrounding rural areas and other urban centers. But a preliminary to such research has typically involved attempts at classifying the urban centers themselves, with this also assisting with the planning and shaping of development policy on different spatial scales. The purpose of the work is to test out the methods underpinning three different classifications of small urban centers, as well as to offer a preliminary interpretation of the outcomes obtained. Research took in 722 settlement units in Poland, granted town rights and populated by fewer than 20,000 inhabitants. A morphologically-based classification making reference to the database of topographic objects as regards land cover within the administrative boundaries of towns and cities was carried out, and it proved possible to distinguish the categories of “housing-estate”, industrial and R&R towns, as well as towns characterized by dichotomy. Equally, a functional/morphological approach taken with the same database allowed for the identification – via an alternative method – of three main categories of small towns (i.e., the monofunctional, multifunctional or oligo functional), which could then be described in far greater detail. A third, multi-criterion classification made simultaneous reference to the conditioning of a structural, a location-related, and an administrative hierarchy-related nature, allowing for distinctions to be drawn between small towns in 9 different categories. The results obtained allow for multifaceted analysis and interpretation of the geographical differentiation characterizing the distribution of Poland’s urban centers across space in the country.

Keywords: small towns, classification, local planning, Poland

Procedia PDF Downloads 87
3054 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 139
3053 Aberrant Consumer Behavior in Seller’s and Consumer’s Eyes: Newly Developed Classification

Authors: Amal Abdelhadi

Abstract:

Consumer misbehavior evaluation can be markedly different based on a number of variables and different from one environment to another. Using three aberrant consumer behavior (ACB) scenarios (shoplifting, stealing from hotel rooms and software piracy) this study aimed to explore Libyan seller and consumers of ACB. Materials were collected by using a multi-method approach was employed (qualitative and quantitative approaches) in two fieldwork phases. In the phase stage, a qualitative data were collected from 26 Libyan sellers’ by face-to-face interviews. In the second stage, a consumer survey was used to collect quantitative data from 679 Libyan consumers. This study found that the consumer’s and seller’s evaluation of ACB are not always consistent. Further, ACB evaluations differed based on the form of ACB. Furthermore, the study found that not all consumer behaviors that were considered as bad behavior in other countries have the same evaluation in Libya; for example, software piracy. Therefore this study suggested a newly developed classification of ACB based on marketers’ and consumers’ views. This classification provides 9 ACB types within two dimensions (marketers’ and consumers’ views) and three degrees of behavior evaluation (good, acceptable and misbehavior).

Keywords: aberrant consumer behavior, Libya, multi-method approach, planned behavior theory

Procedia PDF Downloads 573
3052 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
3051 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
3050 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software

Authors: Chandra Mukherjee

Abstract:

The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.

Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction

Procedia PDF Downloads 411
3049 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method

Authors: Wassana Naiyapo, Atichat Sangtong

Abstract:

The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.

Keywords: classification tree method, test case, UML use case diagram, use case specification

Procedia PDF Downloads 162
3048 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study

Authors: Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.

Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma

Procedia PDF Downloads 129
3047 Neuroendocrine Tumors of the Oral Cavity: A Summarized Overview

Authors: Sona Babu Rathinam, Lavanya Dharmendran, Therraddi Mutthu

Abstract:

Objectives: The purpose of this paper is to provides an overview of the neuroendocrine tumors that arise in the oral cavity. Material and Methods: An overview of the relevant papers on neuroendocrine tumors of the oral cavity by various authors was studied and summarized. Results: On the basis of the relevant studies, this paper provides an overview of the classification and histological differentiation of the neuroendocrine tumors that arise in the oral cavity. Conclusions: The basis of classification of neuroendocrine tumors is largely determined by their histologic differentiation. Though they reveal biologic heterogeneity, there should be an awareness of the occurrence of such lesions in the oral cavity to enable them to be detected and treated early.

Keywords: malignant peripheral nerve sheath tumor, olfactory neuroblastoma, paraganglioma, schwannoma

Procedia PDF Downloads 80
3046 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
3045 Activity Data Analysis for Status Classification Using Fitness Trackers

Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son

Abstract:

Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.

Keywords: activity status, fitness tracker, heart rate, steps

Procedia PDF Downloads 384
3044 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 390
3043 Classification of Traffic Complex Acoustic Space

Authors: Bin Wang, Jian Kang

Abstract:

After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.

Keywords: soundscape, traffic complex, cluster analysis, classification

Procedia PDF Downloads 253
3042 Application of Envelope Spectrum Analysis and Spectral Kurtosis to Diagnose Debris Fault in Bearing Using Acoustic Signals

Authors: Henry Ogbemudia Omoregbee, Mabel Usunobun Olanipekun

Abstract:

Debris fault diagnosis based on acoustic signals in rolling element bearing running at low speed and high radial loads are more of low amplitudes, particularly in the case of debris faults whose signals necessitate high sensitivity analyses. As the rollers in the bearing roll over debris trapped in grease used to lubricate the bearings, the envelope signal created by amplitude demodulation carries additional diagnostic information that is not available through ordinary spectrum analysis of the raw signal. The kurtosis value obtained for three different scenarios (debris induced, outer crack induced, and a normal good bearing) couldn't be used to easily identify whether the used bearings were defective or not. It was established in this work that the envelope spectrum analysis detected the fault signature and its harmonics induced in the debris bearings when bandpass filtering of the raw signal with the frequency band specified by kurtogram and spectral kurtosis was made.

Keywords: rolling bearings, rolling element bearing noise, bandpass filtering, harmonics, envelope spectrum analysis, spectral kurtosis

Procedia PDF Downloads 86
3041 Using LTE-Sim in New Hanover Decision Algorithm for 2-Tier Macrocell-Femtocell LTE Network

Authors: Umar D. M., Aminu A. M., Izaddeen K. Y.

Abstract:

Deployments of mini macrocell base stations also referred to as femtocells, improve the quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with an in-depth focus on the most important aspect of mobility management -handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function, and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time, as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength-based handover decision algorithm.

Keywords: user-equipment, radio signal service, long term evolution, mobility management, handoff

Procedia PDF Downloads 125
3040 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
3039 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
3038 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 87
3037 Improved Cooperative Communication Scheme in the Edge of Cell Coverage

Authors: Myoung-Jin Kim, Yeong-Seop Ahn, Hyun-Jee Yang, Hyoung-Kyu Song

Abstract:

This paper proposes the new cooperative communication scheme for the wireless communication system. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted by the inter-cell interference (ICI) and power reduction by distance. In order to improve communication performance, the proposed scheme adds the relay. By using the relay, the receiver receives the signal from the transmitter and relay at the same time. Therefore, the new cooperative communication scheme obtains diversity gain and is improved by the relay.

Keywords: cooperative communication, diversity gain, OFDM, MIMO

Procedia PDF Downloads 609