Search results for: sensitive inputs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2430

Search results for: sensitive inputs

1800 Post Occupancy Evaluation in Higher Education

Authors: Balogun Azeez Olawale, Azeez S. A.

Abstract:

Post occupancy evaluation (POE) is a process of assessing building performance for its users and intended function during the occupation. User satisfaction impacts the performance of educational environments and their users: students, faculty, and staff. In addition, buildings are maintained and managed by teams that spend a large amount of time and capital on their long-term sustenance. By evaluating the feedback from users of higher education facilities, university planning departments are more prepared to understand the inputs for programming and future project planning. In addition, university buildings will be closer to meeting user and maintenance needs. This paper reports on a research team made up of academics, facility personnel, and users that have developed a plan to improve the quality of campus facilities through a POE exercise on a recently built project. This study utilized a process of focus group interviews representing the different users and subsequent surveys. The paper demonstrates both the theory and practice of POE in higher education and learning environment through the case example of four universities in Nigeria's POE exercise.

Keywords: post occupancy evaluation, building performance, building analysis, building evaluation, quality control, building assessment, facility management, design quality

Procedia PDF Downloads 111
1799 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences

Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal

Abstract:

Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.

Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles

Procedia PDF Downloads 510
1798 Structural Determination of Nanocrystalline Si Films Using Raman Spectroscopy and the Ellipsometry

Authors: K. Kefif, Y. Bouizem, A. Belfedal, D. J. Sib, K. Zellama, l. Chahed

Abstract:

Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by radio frequency magnetron sputtering at relatively low growth temperatures (Ts=100 °C). The films grown on glass substrate in order to use the new generation of substrates sensitive to elevated temperatures. Raman spectroscopy was applied to investigate the effect of the argon gas diluted in hydrogen, on the structural properties and the evolution of the micro structure in the films. Raman peak position, intensity and line width were used to characterize the quality and the percentage of the crystallites in the films. The results of this investigation suggest the existence of a threshold dilution around a gas mixture of argon (40%) and hydrogen (60%) for which the crystallization occurs, even at low deposition temperatures. The difference between the amorphous and the crystallized structures is well confirmed by spectroscopic ellipsometry (SE) technique.

Keywords: Silicon, Thin films, Structural properties, Raman spectroscopy, Ellipsometry

Procedia PDF Downloads 305
1797 Separation of Some Pyrethroid Insecticides by High-Performance Liquid Chromatography

Authors: Fairouz Tazerouti, Samira Ihadadene

Abstract:

Pyrethroids are synthetic pesticides that originated from the modification of natural pyrethrins to improve their biological activity and stability. They are a family of chiral pesticides with a large number of stereoisomers. Enantiomers of synthetic pyretroids present different insecticidal activity, toxicity against aquatic invertebrates and persistence in the environment so the development of rapid and sensitive chiral methods for the determination of different enantiomers is necessary. In this study, the separation of enantiomers of pyrethroid insecticides has been systematically studied using three commercially chiral high-performance liquid chromatography columns. Useful resolution was obtained for compounds with a variety of acid and alcohol moieties, and containing one to four chiral centres. The chromatographic behaviour of the diastereomers of some of these insecticides by using normal, polar and reversed mobile phase mode were also examined.

Keywords: pesticides, analysis, liquid chromatography, pyrethroids

Procedia PDF Downloads 377
1796 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka

Abstract:

The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: drought, reservoirs, cyanobacteria, and phytoplankton ecology

Procedia PDF Downloads 285
1795 Enhanced Visual Sharing Method for Medical Image Security

Authors: Kalaivani Pachiappan, Sabari Annaji, Nithya Jayakumar

Abstract:

In recent years, Information security has emerged as foremost challenges in many fields. Especially in medical information systems security is a major issue, in handling reports such as patients’ diagnosis and medical images. These sensitive data require confidentiality for transmission purposes. Image sharing is a secure and fault-tolerant method for protecting digital images, which can use the cryptography techniques to reduce the information loss. In this paper, visual sharing method is proposed which embeds the patient’s details into a medical image. Then the medical image can be divided into numerous shared images and protected by various users. The original patient details and medical image can be retrieved by gathering the shared images.

Keywords: information security, medical images, cryptography, visual sharing

Procedia PDF Downloads 414
1794 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 389
1793 A Review of Self-Healing Concrete and Various Methods of Its Scientific Implementation

Authors: Davoud Beheshtizadeh, Davood Jafari

Abstract:

Concrete, with its special properties and advantages, has caused it to be widely and increasingly used in construction industry, especially in infrastructures of the country. On the other hand, some defects of concrete and, most importantly, micro-cracks in the concrete after setting have caused the cost of repair and maintenance of infrastructure; therefore, self-healing concretes have been of attention in other countries in the recent years. These concretes have been repaired with general mechanisms such as physical, chemical, biological and combined mechanisms, each of which has different subsets and methods of execution and operation. Also, some of these types of mechanisms are of high importance, which has led to a special production method, and as this subject is new in Iran, this knowledge is almost unknown or at least some part of it has not been considered at all. The present article completely introduces various self-healing mechanisms as a review and tries to present the disadvantages and advantages of each method along with its scope of application.

Keywords: micro-cracks, self-healing concrete, microcapsules, concrete, cement, self-sensitive

Procedia PDF Downloads 145
1792 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 449
1791 Air Access Liberalisation and Tourism Trade Evidence from a Sids

Authors: Seetanah Boopen, R. V. Sannassee

Abstract:

The objective of the present study is two-fold. Firstly, to assess the impact of air access liberalization on tourism demand for Mauritius and secondly to analyses the dual impact of the interplay between air access liberalization and marketing promotion efforts on tourism demand. Using an Autoregressive Distributed Lag model, the results suggest that air access liberalization is an important ingredient, albeit to a lesser extent as compared to other classical explanatory variables, of tourism demand. The results also highlight the fact that Mauritius is perceived as a luxurious destination and tourists are deemed price sensitive. Moreover, our dynamic approach interestingly confirms the presence of repeat tourism in the island. Finally, the findings also uncover the positive impact of the interplay between air access liberalization and marketing promotion efforts on fostering tourism demand.

Keywords: air access liberalization, ARDL, SIDS, time series

Procedia PDF Downloads 310
1790 Amorphous Silicon-Based PINIP Structure for Human-Like Photosensor

Authors: Sheng-Chuan Hsu

Abstract:

Because the existing structure of ambient light sensor is most silicon photodiode device, it is extremely sensitive in the red and infrared regions. Even though the IR-Cut filter had added, it still cannot completely eliminate the influence of infrared light, and the spectral response of infrared light was stronger than that of the human eyes. Therefore, it is not able to present the vision spectrum of the human eye reacts with the ambient light. Then it needs to consider that the human eye feels the spectra that show significant differences between light and dark place. Consequently, in practical applications, we must create and develop advanced device of human-like photosensor which can solve these problems of ambient light sensor and let cognitive lighting system to provide suitable light to achieve the goals of vision spectrum of human eye and save energy.

Keywords: ambient light sensor, vision spectrum, cognitive lighting system, human eye

Procedia PDF Downloads 335
1789 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 384
1788 Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream

Authors: J. C. Cheng, Y. L. Tsay, Z. D. Chan, C. H. Yang

Abstract:

In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ).

Keywords: block heat sources, 3-D cabinet, thermal interaction, heat transfer

Procedia PDF Downloads 555
1787 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 43
1786 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 382
1785 The Effect and Mechanisms of Electroacupuncture on Motion Sickness in Mice

Authors: Chanya Inprasit, Yi-Wen Lin

Abstract:

Motion sickness (MS) is an acute disorder that occurs in healthy persons without considering gender, age or ethnicity worldwide. All signs and symptoms of MS are the results of confliction and mismatch among neural signal inputs. It is known that no singular remedy works for everybody, and electroacupuncture (EA) is one of the popular alternative therapies used for MS. Our study utilized a mouse model in order to exclude any psychological factors of MS and EA. Mice lack an emetic reflex. Therefore pica behavior, which is a normal consumption of non-nutritive substances, was found to measure the response of MS in mice. In the laboratory, Kaolin was used as a non-nutrient food substance instead of natural substances lacking nutritional value such as wood, cloth, charcoal, soil or grass. It was hypothesized that EA treatment could reduce the symptoms of MS through the TRPV1 pathways. The results of pica behavior showed a significantly increased intake of kaolin in the MS group throughout the experiment period. Moreover, the Kaolin intake of the EA group decreased to the average baseline of the control group. There was no recorded difference in the food and water intake of each group. The results indicated an increase of the TRPV1, pERK, pJNK and pmTOR protein levels in the thalamus after MS stimulation, and a significant decrease in the EA group compared with that of the control group. These findings suggest that TRPV1 pathways are associated in MS mechanisms and can be reduced by EA.

Keywords: electroacupuncture, motion sickness, Thalamus, TRPV1

Procedia PDF Downloads 253
1784 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta

Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added

Abstract:

Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.

Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates

Procedia PDF Downloads 202
1783 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow

Procedia PDF Downloads 265
1782 The Challenges and Opportunities Faced by Women in Geomatics Engineering: The Case of the SADC Region

Authors: Moreblessings Shoko

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. Also, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: women, geomatics, challenges, capacity building

Procedia PDF Downloads 574
1781 Effect of III-V Nitrides on Performance of Graphene-Gold SPR Biosensor

Authors: Bijaya Kumar Sahoo

Abstract:

The effect of III-V nitride semiconductors on performance of a graphene-on-gold surface plasmon resonance (SPR) biosensor has been investigated theoretically. III-V nitrides (AlN, GaN and InN) have been grown between gold (Au) and graphene layers. The sensitivity and performance of the biosensor have been computed for with and without semiconductors. Due to superior electronic and optical properties, III-V nitrides demonstrate high sensitivity and performance over Si and Ge. The enhancement of evanescent electric field due to III-V nitrides have been computed and found highest for InN. The analysis shows that for a high-sensitive imaging biosensor the required optimal thickness of gold, InN and graphene are respectively 49 nm, 11 nm and 0.34 nm for the light of wavelength =633 nm (red He-Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging SPR biosensors.

Keywords: SPR biosensor, optical properties, III-V nitrides, sensitivity, enhancement of electric field, performance of graphene gold SPR biosensor

Procedia PDF Downloads 550
1780 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 316
1779 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 325
1778 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior

Authors: Burak Bal

Abstract:

Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.

Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure

Procedia PDF Downloads 154
1777 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 173
1776 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen

Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi

Abstract:

In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.

Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization

Procedia PDF Downloads 339
1775 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 301
1774 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks

Procedia PDF Downloads 445
1773 Understanding the Impact of Climate Change on Farmer's Technical Efficiency in Mali

Authors: Christelle Tchoupé Makougoum

Abstract:

In the context of agriculture, differences across localities in term of climate change can create systematic variation among farmers technical efficiency. Failure to account for climate variability could lead to wrong conclusions about farmers’ technical efficiency and also it could bias the ranking of farmers according to their managerial performance. The literature on agricultural productivity has given little attention to this issue whereas it is necessary for establishing to what extent climate affects farmers efficiency. This article contributes to the preview literature by two ways. First, it proposed a new econometric model that accounting for the climate change influences on technical efficiency in the specific area of agriculture. Second it estimates the inefficiency due to climate change and the real managerial performance of Malian farmers. Using the Mali’s data from agricultural census and CRU TS3 climatic database we implemented an adjusted stochastic frontier methodology to account for the impact of environmental factors. The results yield three main findings. First, instability in temperatures and rainfall decreases technical efficiency on average. Second, the climate change modifies the classification of the farmers according to their efficiency scores. Thirdly it is noted that, although climate changes are partly responsible for the deviation from the border, the capacity of farmers to combine inputs into the optimal proportion is more to undermine. The study concluded that improving farmer efficiency should include fostering their resilience to climate change.

Keywords: agriculture, climate change, stochastic production function, technical efficiency

Procedia PDF Downloads 517
1772 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to mimic the vibration induced by actuators (magnet in coil generators) used to aid in the flight of the UAV. A Fluid-Structure Interaction (FSI) study was performed in order to ascertain pertinent deigns stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is in the range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is in the range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range of 1.04 to 1.23 kPa corresponding to velocity magnitudes in the range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations

Procedia PDF Downloads 503
1771 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 123