Search results for: rapid detection
5135 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 1355134 Dynamic Compaction Assessment for Improving Pasdaran Highway
Authors: Alireza Motamadnia, Roohollah Zohdi Oliayi, Hümeyra Bolakar, Ahmet Tortum
Abstract:
Dynamic compression as a method of soil improvement in recent decades has been considered by engineers and experts. Three methods mainly, deep dynamic compaction, soil density, dynamic and rapid change have been proposed and implemented to improve subgrade conditions of highway road. Northern highway route in Tabriz (Pasdaran), Iran that was placed on the manual soil was the main concern. Engineering properties of soil have been investigated experimentally and theoretically. Among the three methods rapid dynamic compaction for highway has been suggested to improve the soil subgrade conditions.Keywords: manual soil, subsidence, improvement, dynamic compression
Procedia PDF Downloads 6025133 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine
Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine
Abstract:
The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.Keywords: faults, diagnosis, modelling, multiphase machine
Procedia PDF Downloads 645132 Detection of Elephant Endotheliotropic Herpes Virus in a Wild Asian Elephant Calf in Thailand by Using Real-Time PCR
Authors: Bopit Puyati, Anchittha Kaewchana, Nuntita Ruksachat
Abstract:
In January 2018, a male wild elephant, approximately 2 years old, was found dead in Phu Luang Wildlife Sanctuary, Loei province. The elephant was likely to die around 2 weeks earlier. The carcass was decayed without any signs of attack or bullet. No organs were removed. A deadly viral disease was suspected. Different organs including lung, liver, intestine and tongue were collected and submitted to the veterinary research and development center, Surin province for viral detection. The samples were then examined with real-time PCR for detecting U41 Major DNA binding protein (MDBP) gene and with conventional PCR for the presence of specific polymerase gene. We used tumor necrosis factor (TNF) gene as the internal control. In our real-time PCR, elephant endotheliotropic herpesvirus (EEHV) was recovered from lung, liver, and tongue whereas only tongue provided a positive result in the conventional PCR. All samples were positive with TNF gene detection. To our knowledge, this is the first report of EEHV detection in wild elephant in Thailand. EEHV surveillance in this wild population is strongly suggested. Linkage between EEHV in wild and domestic elephants should be further explored.Keywords: elephant endotheliotropic herpes virus, PCR, Thailand, wild Asian elephant
Procedia PDF Downloads 1445131 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform
Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang
Abstract:
Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive
Procedia PDF Downloads 1105130 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 845129 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Amir Shahab Shahabi, Mohsen Hasirian
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 145128 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection
Authors: Devadrita Dey Sarkar
Abstract:
Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)
Procedia PDF Downloads 4565127 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio
Authors: Urvee B. Trivedi, U. D. Dalal
Abstract:
As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)
Procedia PDF Downloads 3455126 e-Learning Security: A Distributed Incident Response Generator
Authors: Bel G Raggad
Abstract:
An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection
Procedia PDF Downloads 4375125 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier
Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur
Abstract:
In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing
Procedia PDF Downloads 905124 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems
Authors: Seyed Mohammad Hashemi, Shahrokh Barati
Abstract:
The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer
Procedia PDF Downloads 4525123 Cepstrum Analysis of Human Walking Signal
Authors: Koichi Kurita
Abstract:
In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion.Keywords: human walking motion, motion measurement, current measurement, electrostatic induction
Procedia PDF Downloads 3445122 Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination
Authors: Kevin Zhao, Norman J. Horing
Abstract:
A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology.Keywords: cell sorter, CTC cell, detection and discrimination, dielectrophoresisords, simulation
Procedia PDF Downloads 4325121 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 1785120 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 1235119 Microfluidic Paper-Based Electrochemical Biosensor
Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi
Abstract:
A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex
Procedia PDF Downloads 2825118 Coal Mining Safety Monitoring Using Wsn
Authors: Somdatta Saha
Abstract:
The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.Keywords: ARM, embedded board, wireless sensor network (Zigbee)
Procedia PDF Downloads 3405117 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration
Authors: George Mariano Soriano
Abstract:
In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability
Procedia PDF Downloads 4095116 Aerogel Fabrication Via Modified Rapid Supercritical Extraction (RSCE) Process - Needle Valve Pressure Release
Authors: Haibo Zhao, Thomas Andre, Katherine Avery, Alper Kiziltas, Deborah Mielewski
Abstract:
Silica aerogels were fabricated through a modified rapid supercritical extraction (RSCE) process. The silica aerogels were made using a tetramethyl orthosilicate precursor and then placed in a hot press and brought to the supercritical point of the solvent, ethanol. In order to control the pressure release without a pressure controller, a needle valve was used. The resulting aerogels were then characterized for their physical and chemical properties and compared to silica aerogels created using similar methods. The aerogels fabricated using this modified RSCE method were found to have similar properties to those in other papers using the unmodified RSCE method. Silica aerogel infused glass blanket composite, graphene reinforced silica aerogel composite were also successfully fabricated by this new method. The modified RSCE process and system is a prototype for better gas outflow control with a lower cost of equipment setup. Potentially, this process could be evolved to a continuous low-cost high-volume production process to meet automotive requirements.Keywords: aerogel, automotive, rapid supercritical extraction process, low cost production
Procedia PDF Downloads 1845115 Detection of Nutrients Using Honeybee-Mimic Bioelectronic Tongue Systems
Authors: Soo Ho Lim, Minju Lee, Dong In Kim, Gi Youn Han, Seunghun Hong, Hyung Wook Kwon
Abstract:
We report a floating electrode-based bioelectronic tongue mimicking honeybee taste systems for the detection and discrimination of various nutrients. Here, carbon nanotube field effect transistors with floating electrodes (CNT-FET) were hybridized with nanovesicles containing honeybee nutrient receptors, gustatory receptors of Apis mellifera. This strategy enables us to detect nutrient substance with a high sensitivity and selectivity. It could also be utilized for the detection of nutrients in liquid food. This floating electrode-based bioelectronic tongue mimicking insect taste systems can be a simple, but highly effective strategy in many different basic research areas about sensory systems. Moreover, our research provides opportunities to develop various applications such as food screening, and it also can provide valuable insights on insect taste systems.Keywords: taste system, CNT-FET, insect gustatory receptor, biolelectronic tongue
Procedia PDF Downloads 2185114 Evaluation of Four Different DNA Targets in Polymerase Chain Reaction for Detection and Genotyping of Helicobacter pylori
Authors: Abu Salim Mustafa
Abstract:
Polymerase chain reaction (PCR) assays targeting genomic DNA segments have been established for the detection of Helicobacter pylori in clinical specimens. However, the data on comparative evaluations of various targets in detection of H. pylori are limited. Furthermore, the frequencies of vacA (s1 and s2) and cagA genotypes, which are suggested to be involved in the pathogenesis of H. pylori in other parts of the world, are not well studied in Kuwait. The aim of this study was to evaluate PCR assays for the detection and genotyping of H. pylori by targeting the amplification of DNA targets from four genomic segments. The genomic DNA were isolated from 72 clinical isolates of H. pylori and tested in PCR with four pairs of oligonucleotides primers, i.e. ECH-U/ECH-L, ET-5U/ET-5L, CagAF/CagAR and Vac1F/Vac1XR, which were expected to amplify targets of various sizes (471 bp, 230 bp, 183 bp and 176/203 bp, respectively) from the genomic DNA of H. pylori. The PCR-amplified DNA were analyzed by agarose gel electrophoresis. PCR products of expected size were obtained with all primer pairs by using genomic DNA isolated from H. pylori. DNA dilution experiments showed that the most sensitive PCR target was 471 bp DNA amplified by the primers ECH-U/ECH-L, followed by the targets of Vac1F/Vac1XR (176 bp/203 DNA), CagAF/CagAR (183 bp DNA) and ET-5U/ET-5L (230 bp DNA). However, when tested with undiluted genomic DNA isolated from single colonies of all isolates, the Vac1F/Vac1XR target provided the maximum positive results (71/72 (99% positives)), followed by ECH-U/ECH-L (69/72 (93% positives)), ET-5U/ET-5L (51/72 (71% positives)) and CagAF/CagAR (26/72 (46% positives)). The results of genotyping experiments showed that vacA s1 (46% positive) and vacA s2 (54% positive) genotypes were almost equally associated with VaCA+/CagA- isolates (P > 0.05), but with VacA+/CagA+ isolates, S1 genotype (92% positive) was more frequently detected than S2 genotype (8% positive) (P< 0.0001). In conclusion, among the primer pairs tested, Vac1F/Vac1XR provided the best results for detection of H. pylori. The genotyping experiments showed that vacA s1 and vacA s2 genotypes were almost equally associated with vaCA+/cagA- isolates, but vacA s1 genotype had a significantly increased association with vacA+/cagA+ isolates.Keywords: H. pylori, PCR, detection, genotyping
Procedia PDF Downloads 1335113 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator
Authors: Neda Navidi, Rene Jr. Landry
Abstract:
Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.Keywords: driver behavior monitoring, integration, IMU, GNSS, monitoring, tracking
Procedia PDF Downloads 2345112 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks
Authors: Deepa Das, Susmita Das
Abstract:
Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO
Procedia PDF Downloads 4675111 Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation
Authors: Artiya Sopharak, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy.Keywords: energy saving, coasting mode, mass rapid transit, quadratic search method
Procedia PDF Downloads 3025110 The Role of Emotion in Attention Allocation
Authors: Michaela Porubanova
Abstract:
In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.Keywords: attention, emotion, flicker task, IAPS
Procedia PDF Downloads 3545109 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location
Authors: Longfei Wang, Selçuk Köse
Abstract:
Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise
Procedia PDF Downloads 3915108 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome
Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya
Abstract:
Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.Keywords: mammography, early detection, genetic screening, breast cancer
Procedia PDF Downloads 5625107 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3235106 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang
Authors: Mengying Du, Xiang Chen
Abstract:
‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.Keywords: community demands, historical context, villages-in-city, urbanization
Procedia PDF Downloads 308