Search results for: quality of learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16112

Search results for: quality of learning

15482 Relationship between Quality Improvement Strategies on the Basis of Different Management Activities

Authors: Manjinder Singh, Anish Sachdeva

Abstract:

Research on total quality management (TQM), total productive maintenance (TPM), international organization for standardization (ISO) and six sigma generally investigate the implementation and impact of these programs in isolation. However, none of these quality improvement programs is self-sufficient and they may not be powerful enough to deliver the improvements and innovations that are required nowadays to ensure the survival and growth of a firm. They are not mutually exclusive and inconsistent. On the contrary, they need complementary support and may reinforce mutually to make use of their complementarity, inducement of side-effects in favor of other quality improvement program, mutual simulation and exploitation of shared values. In this paper, first of all, the various management activities were identified which are normally under focus when any quality improvement program is implemented in any organization. Then TOPSIS methodology was applied to establish the ranking of various quality improvement programs (total quality management, total productive maintenance, ISO and six sigma which were brought to the corporate boardroom to improve the quality) with respect to different management activities (operations related activities, quality related activities, maintenance related activities, organizational related activities, human related activities and finance related activities).

Keywords: total productive maintenance (TPM), total quality management (TQM), TOPSIS, international organization for standardization (ISO)

Procedia PDF Downloads 441
15481 Objective vs. Perceived Quality in the Cereal Industry

Authors: Albena Ivanova, Jill Kurp, Austin Hampe

Abstract:

Cereal products in the US contain rich information on the front of the package (FOP) as well as point-of-purchase (POP) summaries provided by the store. These summaries frequently are confusing and misleading to the consumer. This study explores the relationship between perceived quality, objective quality, price, and value in the cold cereal industry. A total of 270 cold cereal products were analyzed and the price, quality and value for different summaries were compared using ANOVA tests. The results provide evidence that the United States Department of Agriculture Organic FOP/POP are related to higher objective quality, higher price, but not to a higher value. Whole grain FOP/POP related to a higher objective quality, lower or similar price, and higher value. Heart-healthy POP related to higher objective quality, similar price, and higher value. Gluten-free FOP/POP related to lower objective quality, higher price, and lower value. Kid's cereals were of lower objective quality, same price, and lower value compared to family and adult markets. The findings point to a disturbing tendency of companies to continue to produce lower quality products for the kids’ market, pricing them the same as high-quality products. The paper outlines strategies that marketers and policymakers can utilize to contribute to the increased objective quality and value of breakfast cereal products in the United States.

Keywords: cereals, certifications, front-of-package claims, consumer health.

Procedia PDF Downloads 125
15480 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 137
15479 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
15478 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies

Authors: Leesa Mohanty, Ashok Banerjee

Abstract:

Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.

Keywords: audit fees, audit quality, Big N. Auditor, joint audit

Procedia PDF Downloads 358
15477 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 136
15476 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 300
15475 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, learning, religious education, learning text

Procedia PDF Downloads 313
15474 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 112
15473 Media-Based Interventions to Influence English Language Learning: A Case of Bangladesh

Authors: Md. Mizanoor Rahman, Md. Zakir Hossain Talukder, M. Mahruf C. Shohel, Prithvi Shrestha

Abstract:

In Bangladesh, classroom practice and English Learning (EL) competencies acquired both by the teacher and learner in primary and secondary schools are still very weak. Therefore, English is the most commonly failed examination subject at the school level; in addition, there are severe problems in communicative English by the Bangladeshi nationals– this has been characterized as a constraint to economic development. Job applicants and employees often lack English language skills necessary to work effectively. As a result; both government and its international development partners such as DFID, UNESCO, and CIDA have been very active to uplift the quality of the English language learning and implementing projects with innovative approaches. Recently; the economy has been increasing and in line with this, the technology has been deployed in English learning to improve reading, writing, speaking and listening skills. Young Bangladeshi creative, from a variety of backgrounds including film, animation, photography, and digital media are being trained to develop ideas for English Language Teaching (ELT) media. They are being motivated to develop a wide range of ideas for low cost English learning media products. English Language education policy in Bangladesh supports communicative language teaching practices and accordingly, actors have been influencing curriculum, textbook, deployment of technology and assessment changes supporting communicative ELT. The various projects are also being implemented to reform the curriculum, revise the textbook and adjust the assessment mechanism so that the country can increase in proficiency in communicative English among the population. At present; the numbers of teachers, students and adult learners classified at higher levels of proficiency because of deployment of technology and motivation for learning and using English among school population of Bangladesh. The current paper discusses the various interventions in Bangladesh with appropriate media to improve the competencies of the ELT among population.

Keywords: English learning, technology, education, psychological sciences

Procedia PDF Downloads 417
15472 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning

Authors: Petros Roussos

Abstract:

The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.

Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning

Procedia PDF Downloads 310
15471 The Relationship Between Spirituality and Quality of Life in Patients with Spinal Cord Injury, Iran

Authors: Khadije Khazaeli, Farzane Saberi

Abstract:

Spinal cord injury is one of the traumatic events which has a great impact on the quality of life. spirituality has been used to improve many disorders and abnormalities in recent years and positive results have been seen; accordingly, the present study investigated the relationship between spirituality and quality of life in these patients. This study is a cross-sectional study of the correlation type was conducted on 100 people with spinal cord injury in Isfahan province in 2016 by the available sample method. Spirituality was assessed through the Spiritual Attitude Questionnaire and quality of life through the World Health Organization Quality of Life Questionnaire. Pearson correlation and regression tests were used to analyze the data. The results of this study showed that spirituality has a significant relationship with the quality of life of patients with spinal cord injury. It was also proved that all sub-units of spirituality, including attitude and spiritual ability, can affect all components of quality of life. The findings suggest that spirituality, along with other factors, can lead to a significant improvement in quality of life and, ultimately, general health of patients with SCI.

Keywords: spinal cord injury, quality of life, spirituality, patients

Procedia PDF Downloads 99
15470 Implementation of Computer-Based Technologies into Foreign Language Teaching Process

Authors: Golovchun Aleftina, Dabyltayeva Raikhan

Abstract:

Nowadays, in the world of widely developing cross-cultural interactions and rapidly changing demands of the global labor market, foreign language teaching and learning has taken a special role not only in school education but also in everyday life. Cognitive Lingua-Cultural Methodology of Foreign Language Teaching originated in Kazakhstan brings a communicative approach to the forefront in foreign language teaching that gives raise a variety of techniques to make the language learning a real communication. One of these techniques is Computer Assisted Language Learning. In our article, we aim to: demonstrate what learning benefits students are likely to get by teachers having implemented computer-based technologies into foreign language teaching process; prove that technology-based classroom serves as the best tool for interactive and efficient language learning; give examples of classroom sufficient organization with computer-based activities.

Keywords: computer assisted language learning, learning benefits, foreign language teaching process, implementation, communicative approach

Procedia PDF Downloads 473
15469 The Changes of the Relationship between Audit Quality and Earnings Management after Financial Crisis

Authors: Chengxuan Geng, Yizhou E

Abstract:

This paper mainly examines the changes in the relationship between earnings management and audit quality before and after financial crisis in the context of American firms from 2005 to 2010. Based on a sample of 3584 firm year observations, we find that there are changes concerning the relation between accrual-based earnings management and audit quality during the pre-crisis and post-crisis periods. However, the results do not provide enough evidence with regard to the variances in the association between real activities earnings management and audit quality during these two periods.

Keywords: audit quality, earnings management, financial crisis, relationship

Procedia PDF Downloads 341
15468 Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs

Authors: Hector Barrios-Piña, Georgia García-Arellano, Salvador García-Rodríguez, Gerardo Bocanegra-García, Shashi Kant

Abstract:

This work shows the methodology of application and the effectiveness of the Flipped Learning technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the Flipped Learning technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with Flipped Learning. It did not distinguish the benefits of Flipped Learning. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the Flipped Learning technique in future classes.

Keywords: flipped learning, laboratory classes, civil engineering, competences development

Procedia PDF Downloads 162
15467 Teachers' Emphatic Concern for Their Learners

Authors: Prakash Singh

Abstract:

The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.

Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills

Procedia PDF Downloads 436
15466 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat

Authors: Fani Firmahandari

Abstract:

The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.

Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students

Procedia PDF Downloads 361
15465 Learning Styles Difference in Difficulties of Generating Idea

Authors: M. H. Yee, J. Md Yunos, W. Othman, R. Hassan, T. K. Tee, M. M. Mohamad

Abstract:

The generation of an idea that goes through several phases is affected by individual factors, interests, preferences and motivation. The purpose of this research was to analyze the difference in difficulties of generating ideas according to individual learning styles. A total of 375 technical students from four technical universities in Malaysia were randomly selected as samples. The Kolb Learning Styles Inventory and a set of developed questionnaires were used in this research. The results showed that the most dominant learning style is among technical students is Doer. A total of 319 (85.1%) technical students faced difficulties in solving individual assignments. Most of the problem faced by technical students is the difficulty of generating ideas for solving individual assignments. There was no significant difference in difficulties of generating ideas according to students’ learning styles. Therefore, students need to learn higher order thinking skills enabling students to generate ideas and consequently complete assignments.

Keywords: difference, difficulties, generating idea, learning styles, Kolb Learning Styles Inventory

Procedia PDF Downloads 449
15464 Language Learning Strategies to Improve English Speaking Skills among High School Students: A Case Study at Vo Minh Duc High School in Binh Duong Province, Viet Nam

Authors: Du T. Tran, Quyen T. L. Hoang

Abstract:

The role of language learning strategies in second language acquisition has received increased attention across several disciplines in recent years. Language learning strategies have been shown to occur in many studies over the passing years with the aim of improving the efficiency of language learning. Following previous studies, this study endeavors to scrutinize language learning strategies employed by the students at Vo Minh Duc high school and the effect of motivation on students’ learning strategy choices. The responses are examined quantitatively and qualitatively to enhance their validity and reliability. Data are collected from 342 students’ responses to the questionnaire, interviews with ten teachers and fifteen students, and classroom observations. The findings reveal that students’ motivation has an enormous impact on the choice of language learning strategies. The results simultaneously show that students use many language learning strategies to enhance their communicative competence, but the most frequently used ones are cognitive and affective ones. Significant correlations among types of learning strategies and the influence of motivation on the choices of language learning strategies were consistent with previous studies. The study’s results are expected to be beneficial to teachers of English and students in terms of narrowing the gap between the students' language learning strategies and their teaching methodologies preferences and sketching out the best strategies to enhance students’ speaking skills. The implications of these findings and the importance of viewing learners holistically are discussed, and recommendations are made for ongoing research.

Keywords: learning strategies, speaking skills, memorization strategies, cognitive strategies, affective strategies

Procedia PDF Downloads 105
15463 Examining the Significance of Service Learning in Driving the Purpose of a Rural-Based University in South Africa

Authors: C. Maphosa, Ndileleni Mudzielwana, Lufuno Phillip Netshifhefhe

Abstract:

In line with established mission and vision, a university articulates its focus and purpose of existence. The conduct of business in a university should be for the furtherance of the mission and vision. Teaching and learning should play a pivotal role in driving the purpose of a university. In this paper, the researchers examine how service learning could be significant in driving the purpose of a rural-based university whose focus is to promote rural development. The importance of institutions’ vision and mission statement is explored and the vision and mission of the said university examined closely. The concept rural development and the contribution of a university in its promotion is discussed. Service learning as a teaching and learning approach is examined and its significance in driving the purpose of a rural-based university explained.

Keywords: relevance, differentiation, purpose, teaching, learning

Procedia PDF Downloads 320
15462 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: data management, enhancing learning experience, publishing, research higher degree students, doctoral students

Procedia PDF Downloads 274
15461 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 21
15460 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
15459 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 183
15458 The Relationship between Body Positioning and Badminton Smash Quality

Authors: Gongbing Shan, Shiming Li, Zhao Zhang, Bingjun Wan

Abstract:

Badminton originated in ancient civilizations in Europe and Asia more than 2000 years ago. Presently, it is played almost everywhere with estimated 220 million people playing badminton regularly, ranging from professionals to recreational players; and it is the second most played sport in the world after soccer. In Asia, the popularity of badminton and involvement of people surpass soccer. Unfortunately, scientific researches on badminton skills are hardly proportional to badminton’s popularity. A search of literature has shown that the literature body of biomechanical investigations is relatively small. One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. A search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using a 10-camera, 3D motion capture system (VICON MX, 200 frames/s) and 15-segment, full-body biomechanical model, 14 skilled and 15 novice players were measured and analyzed. Results have revealed that the body positioning has direct influence on the quality of a smash, especially on shuttlecock release angle and clearance height (passing over the net) of offensive players. The results also suggest that, for training a proper positioning, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back – a practical reference marker for learning. This perceptional marker could be applied in guiding the learning and training of beginners. As one gains experience through repetitive training, improved limbs’ coordination would increase smash quality further. The researchers hope that the findings will benefit practitioners for developing effective training programs for beginners.

Keywords: 3D motion analysis, biomechanical modeling, shuttlecock release speed, shuttlecock release angle, clearance height

Procedia PDF Downloads 500
15457 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 133
15456 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 13
15455 Flipped Classroom in Bioethics Education: A Blended and Interactive Online Learning Courseware That Enhances Active Learning and Student Engagement

Authors: Molly Pui Man Wong

Abstract:

In this study, a blended and interactive e-learning Courseware that our team developed will be introduced, and our team’s experiences on how the e-learning Courseware and the flipped classroom benefit student learning in bioethics in the medical program will be shared. This study is a continuation of the previously established study, which provides a summary of the well-developed e-learning Courseware in a blended learning approach and an update on its efficiency and efficacy. First, a collection of animated videos capturing selected topics of bioethics and related ethical issues and dilemma will be introduced. Next, a selection of problem-based learning videos (“simulated doctor-patient role play”) with pop-up questions and discussions will be further discussed. Our recent findings demonstrated that these activities launched by the Courseware strongly engaged students in bioethics education and enhanced students’ critical thinking and creativity, which were consistent with the previous data in the preliminary studies. Moreover, the educational benefits of the online art exhibition, art jamming, and competition will be discussed, through which students could express bioethics through arts and enrich their learning in medical research in an interactive, fun, and entertaining way, strengthening their interests in bioethics. Furthermore, online survey questionnaires and focus group interviews were conducted. Consistent with the preliminary studies, our results indicated that implementing the e-learning Courseware with a flipped classroom in bioethics education enhanced both active learning and student engagement. In conclusion, our Courseware not only reinforces education in art, bioethics, and medicine but also benefits students in understanding and critical thinking in socio-ethical issues and serves as a valuable learning tool in bioethics teaching and learning.

Keywords: bioethics, courseware, e-learning, flipped classroom

Procedia PDF Downloads 127
15454 Students and Teachers Perceptions about Interactive Learning in Teaching Health Promotion Course: Implication for Nursing Education and Practice

Authors: Ahlam Alnatour

Abstract:

Background: To our knowledge, there is lack of studies that describe the experience of studying health promotion courses using an interactive approach, and compare students’ and teachers perceptions about this method of teaching. The purpose of this study is to provide a comparison between student and teacher experiences and perspectives in learning health promotion course using interactive learning. Design: A descriptive qualitative design was used to provide an in-depth description and understanding of students’ and teachers experiences and perceptions of learning health promotion courses using an interactive learning. Study Participants: About 14 fourteen students (seven male, seven female) and eight teachers at governmental university in northern Jordan participated in this study. Data Analysis: Conventional content analysis approach was used for participants’ scripts to gain an in-depth description for both students' and teacher’s experiences. Results: The main themes emerged from the data analysis describing the students’ and teachers perceptions of the interactive health promotion class: teachers’ and students positive experience in adopting interactive learning, advantages and benefits of interactive teaching, barriers to interactive teaching, and suggestions for improvement. Conclusion: Both teachers and students reflected positive attitudes toward interactive learning. Interactive learning helped to engage in learning process physically and cognitively. Interactive learning enhanced learning process, promote student attention, enhanced final performance, and satisfied teachers and students accordingly. Interactive learning approach should be adopted in teaching graduate and undergraduate courses using updated and contemporary strategies. Nursing scholars and educators should be motivated to integrate interactive learning in teaching different nursing courses.

Keywords: interactive learning, nursing, health promotion, qualitative study

Procedia PDF Downloads 250
15453 The Role of Concussion and Physical Pain on Depressive Symptoms and Quality of Life

Authors: Daniel Walker, Adam Qureshi, David Marchant, Alex Bahrami Balani

Abstract:

The present study aimed to assess the impact of concussion and physical pain on depression and health-related quality of life. Depressive symptoms were assessed using the Center for Epidemiological Studies' Depression Scale, and scores of health-related quality of life were measured by health-related quality of life short form-12. Data analysis of 67 participants (concussed 32 vs. 35 non-concussed) revealed that (i) 52% were displaying depressive symptoms (concussed 30% vs. non-concussed 22%) (ii) concussion had a significant effect on depressive symptoms when controlling for pain but no effect on the quality of life scores when controlling the same variable (iii) pain had a significant effect on depressive symptoms and quality of life. With this, both concussion and physical pain seem to have a negative impact on mental health; however, individuals may only recognise a reduction in quality of life with increased physical pain, hence a deterioration in mental well-being could be disregarded as a factor of health-related quality of life.

Keywords: depression, quality of life, concussion, physical pain

Procedia PDF Downloads 144