Search results for: multivariate regression analysis
28608 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction
Authors: H. Khomri, A. Bentellis
Abstract:
Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables
Procedia PDF Downloads 26628607 The Effect of Sustainable Land Management Technologies on Food Security of Farming Households in Kwara State, Nigeria
Authors: Shehu A. Salau, Robiu O. Aliu, Nofiu B. Nofiu
Abstract:
Nigeria is among countries of the world confronted with food insecurity problem. The agricultural production systems that produces food for the teaming population is not endurable. Attention is thus being given to alternative approaches of intensification such as the use of Sustainable Land Management (SLM) technologies. Thus, this study assessed the effect of SLM technologies on food security of farming households in Kwara State, Nigeria. A-three stage sampling technique was used to select a sample of 200 farming households for this study. Descriptive statistics, Shriar index, Likert scale, food security index and logistic regression were employed for the analysis. The result indicated that majority (41%) of the household heads were between the ages of 51 and 70 years with an average of 60.5 years. Food security index revealed that 35% and 65% of the households were food secure and food insecure respectively. The logistic regression showed that SLM technologies, estimated income, household size, gender and age of the household heads were the critical determinants of food security among farming households. The most effective coping strategies adopted by households geared towards lessening the effects of food insecurity are reduced quality of food consumed, employed off-farm jobs to raise household income and diversion of money budgeted for other uses to purchase foods. Governments should encourage the adoption and use of SLM technologies at all levels. Policies and strategies that reduce household size should be enthusiastically pursued to reduce food insecurity.Keywords: agricultural practices, coping strategies, farming households, food security, SLM technologies, logistic regression
Procedia PDF Downloads 17128606 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 8028605 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 38528604 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets
Authors: Surinder Deswal, Mahesh Pal
Abstract:
The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences
Procedia PDF Downloads 46228603 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines
Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno
Abstract:
The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.Keywords: household water uses, socio-economic classes, urban planning, urban water demand management
Procedia PDF Downloads 30028602 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 42628601 Maternal Health Care Mirage: A Study of Maternal Health Care Utilization for Young Married Muslim Women in India
Authors: Saradiya Mukherjee
Abstract:
Background: Indian Muslims, compared to their counterparts in other religions, generally do not fare well on many yardsticks related to socio-economic progress and the same is true with maternal health care utilization. Due to low age at marriage a major percentage of child birth is ascribed to young (15-24 years) Muslim mothers in, which pose serious concerns on the maternal health care of Young Married Muslim women (YMMW). A thorough search of past literature on Muslim women’s health and health care reveals that studies in India have mainly focused on religious differences in fertility levels and contraceptive use while the research on the determinants of maternal health care utilization among Muslim women are lacking in India. Data and Methods: Retrieving data from the National Family Health Survey -3 (2005-06) this study attempts to assess the level of utilization and factors effecting three key maternal health indicators (full ANC, safe delivery and PNC) among YMMW (15-24 years) in India. The key socio-economic and demographic variables taken as independent or predictor variables in the study was guided by existing literature particularly for India. Bi-variate analysis and chi square test was applied and variables which were found to be significant were further included in binary logistic regression. Results: The findings of the study reveal abysmally low levels of utilization for all three indicators i.e. full ANC, safe delivery and PNC of maternal health care included in the study. Mother’s education, mass media exposure, women’s autonomy, birth order, economic status wanted status of child and region of residence were found to be significant variables effecting maternal health care utilization among YMMW. Multivariate analysis reveals that no mass media exposure, lower autonomy, education, poor economic background, higher birth order and unintended pregnancy are some of the reasons behind low maternal health care utilization. Conclusion: Considering the low level of safe maternal health care utilization and its proximate determinants among YMMW the study suggests educating Muslim girls, promoting family planning use, involving media and collaboration between religious leader and health care system could be some important policy level interventions to address the unmet need of maternity services among YMMW.Keywords: young Muslim women, religion, socio-economic condition, antenatal care, delivery, post natal care
Procedia PDF Downloads 33528600 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries
Authors: Shorena Pharjiani
Abstract:
The Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.Keywords: central and East European countries (CEEC), economic growth, FDI, panel data
Procedia PDF Downloads 23528599 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 12728598 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance
Authors: Santi Gopal Maji, R. A. J. Syngkon
Abstract:
The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries
Procedia PDF Downloads 19328597 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights
Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel
Abstract:
Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.Keywords: e-commerce, regression, clustering, k-means
Procedia PDF Downloads 1728596 Using Monte Carlo Model for Simulation of Rented Housing in Mashhad, Iran
Authors: Mohammad Rahim Rahnama
Abstract:
The study employs Monte Carlo method for simulation of rented housing in Mashhad second largest city in Iran. A total number of 334 rental residential units in Mashhad, including both apartments and houses (villa), were randomly selected from advertisements placed in Khorasan Newspapers during the months of July and August of 2015. In order to simulate the monthly rent price, the rent index was calculated through combining the mortgage and the rent price. In the next step, the relation between the variables of the floor area and that of the number of bedrooms for each unit, in both apartments and houses(villa), was calculated through multivariate regression using SPSS and was coded in XML. The initial model was called using simulation button in SPSS and was simulated using triangular and binominal algorithms. The findings revealed that the average simulated rental index was 548.5$ per month. Calculating the sensitivity of rental index to a number of bedrooms we found that firstly, 97% of units have three bedrooms, and secondly as the number of bedrooms increases from one to three, for the rent price of less than 200$, the percentage of units having one bedroom decreases from 10% to 0. Contrariwise, for units with the rent price of more than 571.4$, the percentage of bedrooms increases from 37% to 48%. In the light of these findings, it becomes clear that planning to build rental residential units, overseeing the rent prices, and granting subsidies to rental residential units, for apartments with two bedrooms, present a felicitous policy for regulating residential units in Mashhad.Keywords: Mashhad, Monte Carlo, simulation, rent price, residential unit
Procedia PDF Downloads 27328595 Audit Committee Characteristics and Earnings Quality of Listed Food and Beverages Firms in Nigeria
Authors: Hussaini Bala
Abstract:
There are different opinions in the literature on the relationship between Audit Committee characteristics and earnings management. The mix of opinions makes the direction of their relationship ambiguous. This study investigated the relationship between Audit Committee characteristics and earnings management of listed food and beverages Firms in Nigeria. The study covered the period of six years from 2007 to 2012. Data for the study were extracted from the Firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences. The dependent variable was generated using two steps regression in order to determine the discretionary accrual of the sample Firms. Multiple regression was employed to run the data of the study using Random Model. The results from the analysis revealed a significant association between audit committee characteristics and earnings management of the Firms. While audit committee size and committees’ financial expertise showed an inverse relationship with earnings management, committee’s independence, and frequency of meetings are positively and significantly related to earnings management. In line with the findings, the study recommended among others that listed food and beverages Firms in Nigeria should strictly comply with the provision of Companies and Allied Matters Act (CAMA) and SEC Code of Corporate Governance on the issues regarding Audit Committees. Regulators such as SEC should increase the minimum number of Audit Committee members with financial expertise and also have a statutory position on the maximum number of Audit Committees meetings, which should not be greater than four meetings in a year as SEC code of corporate governance is silent on this.Keywords: audit committee, earnings management, listed Food and beverages size, leverage, Nigeria
Procedia PDF Downloads 26828594 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 6728593 Factors Contributing to Farmers’ Attitude Towards Climate Adaptation Farming Practices: A Farm Level Study in Bangladesh
Authors: Md Rezaul Karim, Farha Taznin
Abstract:
The purpose of this study was to assess and describe the individual and household characteristics of farmers, to measure the attitude of farmers towards climate adaptation farming practices and to explore the individual and household factors contributing in predicting their attitude towards climate adaptation farming practices. Data were collected through personal interviews using a pre-tested interview schedule. The data collection was done at Biral Upazila under Dinajpur district in Bangladesh from 1st November to 15 December 2018. Besides descriptive statistical parameters, Pearson’s Product Moment Correlation Coefficient (r), multiple regression and step-wise multiple regression analysis were used for the statistical analysis. Findings indicated that the highest proportion (77.6 percent) of the farmers had moderately favorable attitudes, followed by only 11.2 percent with highly favorable attitudes and 11.2 percent with slightly favorable attitudes towards climate adaptation farming practices. According to the computed correlation coefficients (r), among the 10 selected factors, five of them, such as education of household head, farm size, annual household income, organizational participation, and information access by extension services, had a significant relationship with the attitude of farmers towards climate-smart practices. The step-wise multiple regression results showed that two characteristics as education of household head and information access by extension services, contributed 26.2% and 5.1%, respectively, in predicting farmers' attitudes towards climate adaptation farming practices. In addition, more than two-thirds of farmers cited their opinion to the problems in response to ‘price of vermi species is high and it is not easily available’ as 1st ranked problem, followed by ‘lack of information for innovative climate-smart technologies’. This study suggests that policy implications are necessary to promote extension education and information services and overcome the obstacles to climate adaptation farming practices. It further recommends that research study should be conducted in diverse contexts of nationally or globally.Keywords: factors, attitude, climate adaptation, farming practices, Bangladesh
Procedia PDF Downloads 8728592 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 8028591 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 7128590 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria
Authors: Jamila Garba Audu, Shehu Usman Hassan
Abstract:
The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance
Procedia PDF Downloads 24328589 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 1428588 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 32428587 Admission C-Reactive Protein Serum Levels and In-Hospital Mortality in the Elderly Admitted to the Acute Geriatrics Department
Authors: Anjelika Kremer, Irina Nachimov, Dan Justo
Abstract:
Background: C-reactive protein (CRP) serum levels are commonly measured in hospitalized patients. Elevated admission CRP serum levels and in-hospital mortality has been seldom studied in the general population of elderly patients admitted to the acute Geriatrics department. Methods: A retrospective cross-sectional study was conducted at a tertiary medical center. Included were all elderly patients (age 65 years or more) admitted to a single acute Geriatrics department from the emergency room between April 2014 and January 2015. CRP serum levels were measured routinely in all patients upon the first 24 hours of admission. A logistic regression analysis was used to study if admission CRP serum levels were associated with in-hospital mortality independent of age, gender, functional status, and co-morbidities. Results: Overall, 498 elderly patients were included in the analysis: 306 (61.4%) female patients and 192 (38.6%) male patients. The mean age was 84.8±7.0 years (median: 85 years; IQR: 80-90 years). The mean admission CRP serum levels was 43.2±67.1 mg/l (median: 13.1 mg/l; IQR: 2.8-51.7 mg/l). Overall, 33 (6.6%) elderly patients died during the hospitalization. A logistic regression analysis showed that in-hospital mortality was independently associated with history of stroke (p < 0.0001), heart failure (p < 0.0001), and admission CRP serum levels (p < 0.0001) – and to a lesser extent with age (p = 0.042), collagen vascular disease (p=0.011), and recent venous thromboembolism (p=0.037). Receiver operating characteristic (ROC) curve showed that admission CRP serum levels predict in-hospital mortality fairly with an area under the curve (AUC) of 0.694 (p < 0.0001). Cut-off value with maximal sensitivity and specificity was 19.7 mg/L. Conclusions: Admission CRP serum levels may be used to predict in-hospital mortality in the general population of elderly patients admitted to the acute Geriatrics department.Keywords: c-reactive protein, elderly, mortality, prediction
Procedia PDF Downloads 23628586 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 30028585 Factors Affecting Expectations and Intentions of University Students’ Mobile Phone Use in Educational Contexts
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance- Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling(SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: education, mobile behavior, mobile learning, technology, Turkey
Procedia PDF Downloads 42028584 The Link between Childhood Maltreatment and Psychological Distress: The Mediation and Moderation Roles of Cognitive Distortion, Alexithymia, and Eudemonic Well-Being
Authors: Siqi Fang, Man Cheung Chung
Abstract:
This study examined the inter-relationship between childhood maltreatment, cognitive distortion, alexithymia, eudemonic well-being, and psychological distress. One hundred and eighty-two university students participated in the study and completed an online survey comprising the Childhood Trauma Questionnaire, Cognitive Distortion Scale, Toronto Alexithymia Scale, Psychological Well-Being Scale, and General Health Questionnaire-28. Hierarchical multiple regression analysis showed that child maltreatment, perceptions of hopelessness and helplessness, preoccupation with danger, personal growth, and purpose in life predicted psychological distress. However, alexithymia was not a significant predictor. Further analysis using the regression models with bootstrapping procedure showed that feeling hopeless, helpless and preoccupation with danger mediated the path between child maltreatment and psychological distress. Meanwhile, coping with beliefs in personal growth and life purpose moderated the mediation effects of distorted cognition on psychological distress. To conclude, childhood maltreatment is associated with psychological distress. This relationship is influenced by people’s perceptions of life being hopeless, helpless or dangerous. At the same time, the effect of hopelessness, helplessness, and feelings of danger also depends on the degree of using coping strategies of positive psychological functioning.Keywords: alexithymia, childhood maltreatment, cognitive distortion, eudemonic well-being, psychological distress
Procedia PDF Downloads 34328583 Factors Affecting Expectations and Intentions of University Students in Educational Context
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: learning technology, instructional technology, mobile learning, technology
Procedia PDF Downloads 45028582 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin
Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi
Abstract:
The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling
Procedia PDF Downloads 36828581 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array
Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk
Abstract:
In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.Keywords: antenna pattern, array, signal processing, spatial resolution
Procedia PDF Downloads 17728580 Principal Component Regression in Amylose Content on the Malaysian Market Rice Grains Using Near Infrared Reflectance Spectroscopy
Authors: Syahira Ibrahim, Herlina Abdul Rahim
Abstract:
The amylose content is an essential element in determining the texture and taste of rice grains. This paper evaluates the use of VIS-SWNIRS in estimating the amylose content for seven varieties of rice grains available in the Malaysian market. Each type consists of 30 samples and all the samples are scanned using the spectroscopy to obtain a range of values between 680-1000nm. The Savitzky-Golay (SG) smoothing filter is applied to each sample’s data before the Principal Component Regression (PCR) technique is used to examine the data and produce a single value for each sample. This value is then compared with reference values obtained from the standard iodine colorimetric test in terms of its coefficient of determination, R2. Results show that this technique produced low R2 values of less than 0.50. In order to improve the result, the range should include a wavelength range of 1100-2500nm and the number of samples processed should also be increased.Keywords: amylose content, diffuse reflectance, Malaysia rice grain, principal component regression (PCR), Visible and Shortwave near-infrared spectroscopy (VIS-SWNIRS)
Procedia PDF Downloads 38028579 Investigating the Impacts on Cyclist Casualty Severity at Roundabouts: A UK Case Study
Authors: Nurten Akgun, Dilum Dissanayake, Neil Thorpe, Margaret C. Bell
Abstract:
Cycling has gained a great attention with comparable speeds, low cost, health benefits and reducing the impact on the environment. The main challenge associated with cycling is the provision of safety for the people choosing to cycle as their main means of transport. From the road safety point of view, cyclists are considered as vulnerable road users because they are at higher risk of serious casualty in the urban network but more specifically at roundabouts. This research addresses the development of an enhanced mathematical model by including a broad spectrum of casualty related variables. These variables were geometric design measures (approach number of lanes and entry path radius), speed limit, meteorological condition variables (light, weather, road surface) and socio-demographic characteristics (age and gender), as well as contributory factors. Contributory factors included driver’s behavior related variables such as failed to look properly, sudden braking, a vehicle passing too close to a cyclist, junction overshot, failed to judge other person’s path, restart moving off at the junction, poor turn or manoeuvre and disobeyed give-way. Tyne and Wear in the UK were selected as a case study area. The cyclist casualty data was obtained from UK STATS19 National dataset. The reference categories for the regression model were set to slight and serious cyclist casualties. Therefore, binary logistic regression was applied. Binary logistic regression analysis showed that approach number of lanes was statistically significant at the 95% level of confidence. A higher number of approach lanes increased the probability of severity of cyclist casualty occurrence. In addition, sudden braking statistically significantly increased the cyclist casualty severity at the 95% level of confidence. The result concluded that cyclist casualty severity was highly related to approach a number of lanes and sudden braking. Further research should be carried out an in-depth analysis to explore connectivity of sudden braking and approach number of lanes in order to investigate the driver’s behavior at approach locations. The output of this research will inform investment in measure to improve the safety of cyclists at roundabouts.Keywords: binary logistic regression, casualty severity, cyclist safety, roundabout
Procedia PDF Downloads 174