Search results for: mixed models
8743 Suitability of Black Box Approaches for the Reliability Assessment of Component-Based Software
Authors: Anjushi Verma, Tirthankar Gayen
Abstract:
Although, reliability is an important attribute of quality, especially for mission critical systems, yet, there does not exist any versatile model even today for the reliability assessment of component-based software. The existing Black Box models are found to make various assumptions which may not always be realistic and may be quite contrary to the actual behaviour of software. They focus on observing the manner in which the system behaves without considering the structure of the system, the components composing the system, their interconnections, dependencies, usage frequencies, etc.As a result, the entropy (uncertainty) in assessment using these models is much high.Though, there are some models based on operation profile yet sometimes it becomes extremely difficult to obtain the exact operation profile concerned with a given operation. This paper discusses the drawbacks, deficiencies and limitations of Black Box approaches from the perspective of various authors and finally proposes a conceptual model for the reliability assessment of software.Keywords: black box, faults, failure, software reliability
Procedia PDF Downloads 4438742 Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method
Authors: R. Benakcha, M. Omari
Abstract:
Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films.Keywords: aluminate, lanthan, perovskite, sol-gel
Procedia PDF Downloads 2798741 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society
Authors: Weihua Ruan, Kuan-Chou Chen
Abstract:
This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models
Procedia PDF Downloads 3778740 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 898739 Operations Research Applications in Audit Planning and Scheduling
Authors: Abdel-Aziz M. Mohamed
Abstract:
This paper presents a state-of-the-art survey of the operations research models developed for internal audit planning. Two alternative approaches have been followed in the literature for audit planning: (1) identifying the optimal audit frequency; and (2) determining the optimal audit resource allocation. The first approach identifies the elapsed time between two successive audits, which can be presented as the optimal number of audits in a given planning horizon, or the optimal number of transactions after which an audit should be performed. It also includes the optimal audit schedule. The second approach determines the optimal allocation of audit frequency among all auditable units in the firm. In our review, we discuss both the deterministic and probabilistic models developed for audit planning. In addition, game theory models are reviewed to find the optimal auditing strategy based on the interactions between the auditors and the clients.Keywords: operations research applications, audit frequency, audit-staff scheduling, audit planning
Procedia PDF Downloads 8168738 Second Order Cone Optimization Approach to Two-stage Network DEA
Authors: K. Asanimoghadam, M. Salahi, A. Jamalian
Abstract:
Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.Keywords: network DEA, conic optimization, undesirable output, SBM
Procedia PDF Downloads 1948737 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models
Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini
Abstract:
The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion
Procedia PDF Downloads 1428736 Comparison and Validation of a dsDNA biomimetic Quality Control Reference for NGS based BRCA CNV analysis versus MLPA
Authors: A. Delimitsou, C. Gouedard, E. Konstanta, A. Koletis, S. Patera, E. Manou, K. Spaho, S. Murray
Abstract:
Background: There remains a lack of International Standard Control Reference materials for Next Generation Sequencing-based approaches or device calibration. We have designed and validated dsDNA biomimetic reference materials for targeted such approaches incorporating proprietary motifs (patent pending) for device/test calibration. They enable internal single-sample calibration, alleviating sample comparisons to pooled historical population-based data assembly or statistical modelling approaches. We have validated such an approach for BRCA Copy Number Variation analytics using iQRS™-CNVSUITE versus Mixed Ligation-dependent Probe Amplification. Methods: Standard BRCA Copy Number Variation analysis was compared between mixed ligation-dependent probe amplification and next generation sequencing using a cohort of 198 breast/ovarian cancer patients. Next generation sequencing based copy number variation analysis of samples spiked with iQRS™ dsDNA biomimetics were analysed using proprietary CNVSUITE software. Mixed ligation-dependent probe amplification analyses were performed on an ABI-3130 Sequencer and analysed with Coffalyser software. Results: Concordance of BRCA – copy number variation events for mixed ligation-dependent probe amplification and CNVSUITE indicated an overall sensitivity of 99.88% and specificity of 100% for iQRS™-CNVSUITE. The negative predictive value of iQRS-CNVSUITE™ for BRCA was 100%, allowing for accurate exclusion of any event. The positive predictive value was 99.88%, with no discrepancy between mixed ligation-dependent probe amplification and iQRS™-CNVSUITE. For device calibration purposes, precision was 100%, spiking of patient DNA demonstrated linearity to 1% (±2.5%) and range from 100 copies. Traditional training was supplemented by predefining the calibrator to sample cut-off (lock-down) for amplicon gain or loss based upon a relative ratio threshold, following training of iQRS™-CNVSUITE using spiked iQRS™ calibrator and control mocks. BRCA copy number variation analysis using iQRS™-CNVSUITE™ was successfully validated and ISO15189 accredited and now enters CE-IVD performance evaluation. Conclusions: The inclusion of a reference control competitor (iQRS™ dsDNA mimetic) to next generation sequencing-based sequencing offers a more robust sample-independent approach for the assessment of copy number variation events compared to mixed ligation-dependent probe amplification. The approach simplifies data analyses, improves independent sample data analyses, and allows for direct comparison to an internal reference control for sample-specific quantification. Our iQRS™ biomimetic reference materials allow for single sample copy number variation analytics and further decentralisation of diagnostics to single patient sample assessment.Keywords: validation, diagnostics, oncology, copy number variation, reference material, calibration
Procedia PDF Downloads 668735 Development on the Modeling Driven Architecture
Authors: Sahar Shahsavaripour Ghazanfarpour
Abstract:
As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation
Procedia PDF Downloads 4958734 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications
Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra
Abstract:
Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.Keywords: granular beds, numerical models, rotary kilns, solar thermal applications
Procedia PDF Downloads 438733 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts
Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár
Abstract:
The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting
Procedia PDF Downloads 1848732 Evaluation of Long Term Evolution Mobile Signal Propagation Models and Vegetation Attenuation in the Livestock Department at Escuela Superior Politécnica de Chimborazo
Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres
Abstract:
This article evaluates and compares three propagation models: the Okumura-Hata model, the Ericsson 9999 model, and the SUI model. The inclusion of vegetation attenuation in the area is also taken into account. These mathematical models aim to predict the power loss between a transmitting antenna (Tx) and a receiving antenna (Rx). The study was conducted in the open areas of the Livestock Department at the Escuela Superior Politécnica de Chimborazo (ESPOCH) University, located in the city of Riobamba, Ecuador. The necessary parameters for each model were calculated, considering LTE technology. The transmitting antenna belongs to the mobile phone company ”TUENTI” in Band 2, operating at a frequency of 1940 MHz. The reception power data in the area were empirically measured using the ”Network Cell Info” application. A total of 170 samples were collected, distributed across 19 radius, forming concentric circles around the transmitting antenna. The results demonstrate that the Okumura Hata urban model provides the best fit to the measured data.Keywords: propagation models, reception power, LTE, power losses, correction factor
Procedia PDF Downloads 828731 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort
Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler
Abstract:
Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America
Procedia PDF Downloads 858730 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems
Authors: Ahmed Fradi
Abstract:
Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation
Procedia PDF Downloads 2638729 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies
Authors: Dmitry V. Fomichev, Vladimir V. Solonin
Abstract:
This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics
Procedia PDF Downloads 3858728 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales
Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias
Abstract:
Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline
Procedia PDF Downloads 818727 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State
Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik
Abstract:
Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate
Procedia PDF Downloads 1998726 Investigation of Biogas from Slaughterhouse and Dairy Farm Waste
Authors: Saadelnour Abdueljabbar Adam
Abstract:
Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%).Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content
Procedia PDF Downloads 5698725 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3528724 Modeling Exponential Growth Activity Using Technology: A Research with Bachelor of Business Administration Students
Authors: V. Vargas-Alejo, L. E. Montero-Moguel
Abstract:
Understanding the concept of function has been important in mathematics education for many years. In this study, the models built by a group of five business administration and accounting undergraduate students when carrying out a population growth activity are analyzed. The theoretical framework is the Models and Modeling Perspective. The results show how the students included tables, graphics, and algebraic representations in their models. Using technology was useful to interpret, describe, and predict the situation. The first model, the students built to describe the situation, was linear. After that, they modified and refined their ways of thinking; finally, they created exponential growth. Modeling the activity was useful to deep on mathematical concepts such as covariation, rate of change, and exponential function also to differentiate between linear and exponential growth.Keywords: covariation reasoning, exponential function, modeling, representations
Procedia PDF Downloads 1208723 Exploring the Factors Affecting the Dependability of Mobile Devices in the Current World
Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono
Abstract:
In recent times the level of advancement in electronics and manufacturing technologies for portable electronic devices, especially for mobile devices such as cell phones, smartphones, personal digital assistants and tablet computers is unprecedented. Mobile devices have become indispensable to individuals, and businesses all over the world. The high level of manufacturing and production of mobile devices has led to the rapid release of newer and sleeker models with new features and capabilities. However, these newer models therefore render older models obsolete, and this pushes people to frequently replace their devices. The drawback of such frequent replacements is that a large number of devices are disposed and they end up as e-waste. The fact that e-waste constitutes a major hazard to human health and to the environment is the motivation behind this study whose aim is to develop a model of possible factors that affects the dependability of mobile devices which in turn leads to the obsolescence of these devices.Keywords: dependability, mobile devices, obsolescence, e-waste
Procedia PDF Downloads 3158722 Pareidolia and Perception of Anger in Vehicle Styles: Survey Results
Authors: Alan S. Hoback
Abstract:
Most people see human faces in car front and back ends because of the process of pareidolia. 96 people were surveyed to see how many of them saw a face in the vehicle styling. Participants were aged 18 to 72 years. 94% of the participants saw faces in the front-end design of production models. All participants that recognized faces indicated that most styles showed some degree of an angry expression. It was found that women were more likely to see faces in inanimate objects. However, with respect to whether women were more likely to perceive anger in the vehicle design, the results need further clarification. Survey responses were correlated to the design features of vehicles to determine what cues the respondents were likely looking at when responding. Whether the features looked anthropomorphic was key to anger perception. Features such as the headlights which could represent eyes and the air intake that could represent a mouth had high correlations to trends in scores. Results are compared among models, makers, by groupings of body styles classifications for the top 12 brands sold in the US, and by year for the top 20 models sold in the US in 2016. All of the top models sold increased in perception of an angry expression over the last 20 years or since the model was introduced, but the relative change varied by body style grouping.Keywords: aggressive driving, face recognition, road rage, vehicle styling
Procedia PDF Downloads 1428721 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2758720 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach
Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist
Abstract:
Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.
Procedia PDF Downloads 798719 Models Development of Graphical Human Interface Using Fuzzy Logic
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.Keywords: software development models, software quality, supervision software, fuzzy logic
Procedia PDF Downloads 3738718 Studying Second Language Development from a Complex Dynamic Systems Perspective
Authors: L. Freeborn
Abstract:
This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.Keywords: dynamic systems theory, mixed methods, research design, second language development
Procedia PDF Downloads 1368717 A Comparative Study of Approaches in User-Centred Health Information Retrieval
Authors: Harsh Thakkar, Ganesh Iyer
Abstract:
In this paper, we survey various user-centered or context-based biomedical health information retrieval systems. We present and discuss the performance of systems submitted in CLEF eHealth 2014 Task 3 for this purpose. We classify and focus on comparing the two most prevalent retrieval models in biomedical information retrieval namely: Language Model (LM) and Vector Space Model (VSM). We also report on the effectiveness of using external medical resources and ontologies like MeSH, Metamap, UMLS, etc. We observed that the LM based retrieval systems outperform VSM based systems on various fronts. From the results we conclude that the state-of-art system scores for MAP was 0.4146, P@10 was 0.7560 and NDCG@10 was 0.7445, respectively. All of these score were reported by systems built on language modeling approaches.Keywords: clinical document retrieval, concept-based information retrieval, query expansion, language models, vector space models
Procedia PDF Downloads 3218716 The Content-Based Classroom: Perspectives on Integrating Language and Content
Authors: Mourad Ben Bennani
Abstract:
Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching.Keywords: CBI, CLIL, CBI continuum, CLIL models
Procedia PDF Downloads 4368715 A Mixed Approach to Assess Information System Risk, Operational Risk, and Congolese Microfinance Institutions Performance
Authors: Alfred Kamate Siviri, Angelus Mafikiri Tsongo, Jean Robert Kala Kamdjoug
Abstract:
Digitalization and information systems well organized have been selected as relevant measures to mitigate operational risks within organizations. Unfortunately, information system comes with new threats that can cause severe damage and quick organization lockout. This study aims to measure perceived information system risks and their effects on operational risks within the microfinance institution in D.R. Congo. Also, the factors influencing the operational risk are identified, and the link between operational risk with other risks and performance is to be assessed. The study proposes a research model drawn on the combination of Resources-Based-View, dynamic capabilities, the agency theory, the Information System Security Model, and social theories of risk. Therefore, we suggest adopting a mixed methods research with the sole aim of increasing the literature that already exists on perceived operational risk assessment and its link with other risk and performance, a focus on IT risk.Keywords: Democratic Republic Congo, information system risk, microfinance performance, operational risk
Procedia PDF Downloads 2278714 Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation
Authors: Mabrouka Morri, Amel Soualmia, Philippe Belleudy
Abstract:
Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.Keywords: analytic models, comparison, mean velocity, vegetation
Procedia PDF Downloads 277