Search results for: meteorological drought probabilities
217 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile
Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón
Abstract:
Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat
Procedia PDF Downloads 81216 Discovering Event Outliers for Drug as Commercial Products
Authors: Arunas Burinskas, Aurelija Burinskiene
Abstract:
On average, ten percent of drugs - commercial products are not available in pharmacies due to shortage. The shortage event disbalance sales and requires a recovery period, which is too long. Therefore, one of the critical issues that pharmacies do not record potential sales transactions during shortage and recovery periods. The authors suggest estimating outliers during shortage and recovery periods. To shorten the recovery period, the authors suggest using average sales per sales day prediction, which helps to protect the data from being downwards or upwards. Authors use the outlier’s visualization method across different drugs and apply the Grubbs test for significance evaluation. The researched sample is 100 drugs in a one-month time frame. The authors detected that high demand variability products had outliers. Among analyzed drugs, which are commercial products i) High demand variability drugs have a one-week shortage period, and the probability of facing a shortage is equal to 69.23%. ii) Mid demand variability drugs have three days shortage period, and the likelihood to fall into deficit is equal to 34.62%. To avoid shortage events and minimize the recovery period, real data must be set up. Even though there are some outlier detection methods for drug data cleaning, they have not been used for the minimization of recovery period once a shortage has occurred. The authors use Grubbs’ test real-life data cleaning method for outliers’ adjustment. In the paper, the outliers’ adjustment method is applied with a confidence level of 99%. In practice, the Grubbs’ test was used to detect outliers for cancer drugs and reported positive results. The application of the Grubbs’ test is used to detect outliers which exceed boundaries of normal distribution. The result is a probability that indicates the core data of actual sales. The application of the outliers’ test method helps to represent the difference of the mean of the sample and the most extreme data considering the standard deviation. The test detects one outlier at a time with different probabilities from a data set with an assumed normal distribution. Based on approximation data, the authors constructed a framework for scaling potential sales and estimating outliers with Grubbs’ test method. The suggested framework is applicable during the shortage event and recovery periods. The proposed framework has practical value and could be used for the minimization of the recovery period required after the shortage of event occurrence.Keywords: drugs, Grubbs' test, outlier, shortage event
Procedia PDF Downloads 135215 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 118214 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria
Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui
Abstract:
The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.Keywords: atmospheric pollution, cement, dust, environment
Procedia PDF Downloads 338213 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce
Authors: Heiko Diefenbach, Christoph H. Glock
Abstract:
Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.Keywords: an aging workforce, error prevention, order picking, storage assignment
Procedia PDF Downloads 204212 Coconut Based Sustainable Agri-Silvicultural System: Success Story from Sri Lanka
Authors: Thavananthan Sivananthawerl
Abstract:
Coconut palm is existing for more than 2000 years in Sri Lanka. However, cultivation on a large scale (plantation) began only in the 19th century. Due to different light perceptions during the growth stages of palm, there is a huge potential to grow crops in-between rows of coconut plants which are grown with wider, fixed spacing. Intercropping under coconut will have multiple benefits such as increasing soil fertility, increasing sunlight utilization, increasing total crop productivity, increasing income & profit, maximum use of resources, reducing the risk, and increasing food security. Growing potential annual, agricultural intercrops could be classified as ‘agri-silvicultural’ system. This is the best agri-silvicultural system that can be named under any perennial crop system in Sri Lanka. In the late 1970’s cassava, pepper and cacao are the major intercrops under the coconut plantations. At the early ages of the palm (<5 years) light-loving crops such as pineapple, passion, papaya, and cassava are recommended and preferred by the cultivators. In between 5-20 years of age, the availability of light is very low, and therefore shade tolerant/loving crops (pasture, yam, ginger) could be used as the intercrops. However, after 20 years of age (>20 years) canopy is getting small, and the light availability on the ground increases. So, light demanding crops such as pepper, banana, pineapple, betel, cassava, and seasonal crops could be grown successfully. Even though this is a sustainable system in several aspects, there are potential challenges ahead to the system. The major ones are land fragmentation and infrastructure development. The other factors are drought, lack of financial support, price instability of the intercrops, availability of improved planting materials, and development of dwarf varieties which reduces the light.Keywords: coconut cultivation, agri-silviculture, intercrop, sunlight, annuals, sustainability
Procedia PDF Downloads 123211 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses
Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel
Abstract:
Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood
Procedia PDF Downloads 206210 A Review on Future of Plant Based Medicine in Treatment of Urolithiatic Disorder
Authors: Gopal Lamichhane, Biswash Sapkota, Grinsun Sharma, Mahendra Adhikari
Abstract:
Urolithiasis is a condition in which insoluble or less soluble salts like oxalate, phosphate etc. precipitate in urinary tract and causes obstruction in ureter resulting renal colic or sometimes haematuria. It is the third most common disorder of urinary tract affecting nearly 2% of world’s population. Poor urinary drainage, microbial infection, oxalate and calcium containing diet, calciferol, hyperparathyroidism, cysteine in urine, gout, dysfunction of intestine, drought environment, lifestyle, exercise, stress etc. are risk factors for urolithiasis. Wide ranges of treatments are available in allopathic system of medicine but reoccurrence is unpreventable even with the surgical removal of stone or lithotripsy. So, people prefer alternative medicinal systems such as Unani, homeopathic, ayurvedic etc. systems of medicine due to their fewer side effects over allopathic counterpart. Different plants based ethnomedicines are being well established by their continuous effective use in human since long time in treatment of urinary problem. Many studies have scientifically proved those ethnomedicines for antiurolithiatic effect in animal and in vitro model. Plant-based remedies were found to be therapeutically effective for both prevention as well as cure of calcium oxalate urolithiasis. Plants were known to show these effects through a combination of many effects such as antioxidant, diuretic, hypocalciuric, urine alkalinizing effect in them. Berberine, triterpenoids, lupeol are the phytochemicals established for antiurolithiatic effect. Hence, plant-based medicine can be the effective herbal alternative as well as means of discovery of novel drug molecule for curing urolithiatic disorder and should be focused on further research to discover their value in coming future.Keywords: urolithiasis, herbal medicine, ethnomedicine, kidney stone, calcium oxalate
Procedia PDF Downloads 275209 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 186208 An Investigation into Root Causes of Sabotage and Vandalism of Pipes: A Major Environmental Effluence in Niger Delta, Nigeria
Authors: Oshienemen Albert
Abstract:
Human’s activities could be pointed as the root cause of almost all environmental damages/ disasters as we contribute to the activities that are currently damaging the ozone layers (global warming), unusual environmental changes and extreme weather conditions (climate change) in recent times. Nigeria just as every other disaster-prone nation is faced with different types of disasters and environmental calamities, starting from terrorist displacement disasters, flood, drought and oil spill hazards. Oil spillage as an environmental disaster has great consequences not just on the environment but on human health, economy and the entire populace that might be involved, which deem necessary to look into the root causes of the incidents and how it can be curtailed. The different incidents of oil spillages and other oil production consequent on the environment is alarming in the Nigerian context and cannot be overemphasized without a critical investigation and synthesis. This paper investigates the root causes of environmental pollution induced by oil spill hazards from petroleum activities within Niger Delta communities of effects and detailed the potential solutions to reduce the causal factors and reoccurrence of the incidents. This study adopts a desk-based approach, interviews with key members of communities which consist of chiefs, youth leaders, and key women within the high environmental damaged communities. Also, Interviews were conducted with environmental expertise representatives from the oil and gas sectors and representatives from oil spill-related agency. Data were analyzed using thematic techniques. The study shows different influencing factors of sabotage and vandalism of oil facilities as such; marginalization, deprivation of resources utility and resource derivation principles were identified as major contributors to vandalism and sabotage act. The study proposed potential strategies to curtail the root causes of sabotage and vandalism as the major causes of environmental devastations in Nigeria.Keywords: environment, oil spill hazards, Niger delta, Nigeria
Procedia PDF Downloads 191207 Impacts of Climate Change on Number of Snowy Days and Snow Season Lengths in Turkey
Authors: Evren Ozgur, Kasim Kocak
Abstract:
As a result of global warming and climate change, air temperature has increased and will continue to increase in the future. Increases in air temperatures have effects on a large number of variables in meteorology. One of the most important effects is the changes in the types of precipitation, especially in mid-latitudes. Because of increasing air temperatures, less snowfall was observed in the eastern parts of Turkey. Snowfall provides most of the water supply in spring and summer months, especially in mountainous regions of Turkey. When the temperature begins to increase in spring season, this snow starts to melt and plays an important role in agricultural purposes, drinking water supply and energy production. On the other hand, defining the snow season is very crucial especially in mountainous areas which have winter tourism opportunities. A reduction in the length of the snow season (LSS) in these regions will result in serious consequences in the long run. In the study, snow season was examined for 10 meteorological stations that are located above the altitude of 1000m. These stations have decreasing trends in the ratio of number of snowy days to total precipitation days considering earlier studies. Daily precipitation records with the observation period of 1971-2011 were used in the study. Then, the observation period was separated into 4 non-overlapping parts in order to identify decadal variations. Changes in the length of the snow season with increasing temperatures were obtained for these stations. The results of LSS were evaluated with the number of snowy days for each station. All stations have decreasing trend in number of snowy days for 1971-2011 period. In addition, seven of the results are statistically significant. Besides, decrease is observed regarding the length of snow season for studied stations. The decrease varies between 6.6 and 47.6 days according to decadal snow season averages of the stations.Keywords: climate change, global warming, precipitation, snowfall, Turkey
Procedia PDF Downloads 173206 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case
Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios
Abstract:
The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system
Procedia PDF Downloads 379205 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 519204 Effect of Climate Change on Aridity Index in South Bihar
Authors: Aayush Anant, Roshni Thendiyath
Abstract:
Aridity impacts on agriculture, as well as ecological, human health, and economic activities. In the present study, the effect of climate change on aridity index has been analysed in South Bihar for the past 30 year period by five types of aridity indices as Lang AI, De-Martonne AI, Erinc AI, Pinna combinative AI and UNEP AI. For the study of aridity index, the analysis of rainfall and temperature is significant. Rainfall was analysed for 30 year period from data of 23 gridded stations in for the period 1991-2020. The results show that rainfall pattern was decreasing with respect to previous decades for majority of stations. Trend of maximum, minimum and mean annual temperature has been observed, which shows increasing trend. Structural breakpoint was observed for mean annual temperature data series in year 2004. In period 1991-2004 mean annual temperature was 25.25 ºC, and in period 2005-2020, mean annual temperature was 25.7 ºC. Average aridity index has been calculated by all the above mentioned methods for whole 30 period. Lang AI shows that eastern part of study area is Humid type, and rest all is semi arid. De-Martonne AI also reveals that east part is humid, but rest of the study area is moist sub humid. According to Erinc AI and Pinna, combinative AI shows that whole south Bihar is dry sub humid and semi dry, respectively. UNEP AI shows most of the part as sub humid, and very small part in west is semi arid, while small part of east is humid. Temporal distribution of all the aridity indices shows a decreasing trend. This indicates a decrease in the humid areas in south Bihar for the selected time period.Keywords: drought, aridity index, climate change, rainfall, temperature
Procedia PDF Downloads 83203 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact
Authors: Guillaume Richard, Sarra Zaied
Abstract:
Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.Keywords: marine litter, advection-diffusion equation, sea current, numerical model
Procedia PDF Downloads 87202 Analysis of Extreme Case of Urban Heat Island Effect and Correlation with Global Warming
Authors: Kartikey Gupta
Abstract:
Global warming and environmental degradation are at their peak today, with the years after 2000A.D. giving way to 15 hottest years in terms of average temperatures. In India, much of the standard temperature measuring equipment are located in ‘developed’ urban areas, hence showing us an incomplete picture in terms of the climate across many rural areas, which comprises most of the landmass. This study showcases data studied by the author since 3 years at Vatsalya’s Children’s village, in outskirts of Jaipur, Rajasthan, India; in the midst of semi-arid topography, where consistently huge temperature differences of up to 15.8 degrees Celsius from local Jaipur weather only 30 kilometers away, are stunning yet scary at the same time, encouraging analysis of where the natural climatic pattern is heading due to rapid unrestricted urbanization. Record-breaking data presented in this project enforces the need to discuss causes and recovery techniques. This research further explores how and to what extent we are causing phenomenal disturbances in the natural meteorological pattern by urban growth. Detailed data observations using a standardized ambient weather station at study site and comparing it with closest airport weather data, evaluating the patterns and differences, show striking differences in temperatures, wind patterns and even rainfall quantity, especially during high-pressure zone days. Winter-time lows dip to 8 degrees below freezing with heavy frost and ice, while only 30 kms away minimum figures barely touch single-digit temperatures. Human activity is having an unprecedented effect on climatic patterns in record-breaking trends, which is a warning of what may follow in the next 15-25 years for the next generation living in cities, and a serious exploration into possible solutions is a must.Keywords: climate change, meteorology, urban heat island, urbanization
Procedia PDF Downloads 87201 Exploring Perceptions of Local Stakeholders in Climate Change Adaptation in Central and Western Terai, Nepal
Authors: Shree Kumar Maharjan
Abstract:
Climate change has varied impacts on diverse livelihood sectors, which is more prominent at the community level. The stakeholders and local institutions have been supporting the communities either by building adaptive capacities and resilience or minimizing the impacts of different adaptation interventions. Some of these interventions are effective, whereas others need further dynamisms and exertions considering the complexity of the risks and vulnerabilities. Hence, consolidated efforts of concerned stakeholders are required to minimize and adapt the present and future impacts. This study digs out and analyses the perceptions of local stakeholders in climate change adaptation in Madi and Deukhuri valleys of Nepal through a questionnaire survey. The study has categorized the local stakeholders into 5 groups in the study sites – Farmers groups and cooperatives, Government, I/NGOs, Development banks and education and other organizations. The local stakeholders revealed flood, drought, cold wave and riverbank erosion as the major climatic risks and hazards found in the sites eventually impacting on the loss of agricultural production, loss of agricultural land and properties, loss of livestock, the emergence of diseases and pest. The stakeholders believed that most of the farmers dealing with these impacts based on their traditional knowledge and practices, followed by with the support of NGOs and with the help of neighbors and community. The major supports of the stakeholders to deal with these impacts were on training and awareness, risk analysis and minimization, livelihood improvement, financial support, coordination and networking and facilitation in policy formulation. The stakeholders emphasized primarily on capacity building, appropriate technologies, community-based planning and monitoring, prioritization to the poor and the marginalized and establishment of community fund respectively for building adaptive capacities.Keywords: climate change adaptation, local stakeholders, Madi, Deukhuri, Nepal
Procedia PDF Downloads 180200 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 289199 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan
Authors: Malek Jamaliah, Robert Powell
Abstract:
In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management
Procedia PDF Downloads 511198 Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide
Authors: Udomporn Pangnakorn, Settawut Prasatporn, Sombat Chuenchooklin
Abstract:
The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control.Keywords: maize, Zea mays Linn., biopesticide, bitter bush, Chromolaena odorata L.), neem, Azadirachta indica A. Juss, golden shower, Cassia fistula Linn.
Procedia PDF Downloads 325197 Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo
Authors: Getamesay Kassaye Dimru
Abstract:
The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households.Keywords: degradation, fruit, irrigation, pest
Procedia PDF Downloads 238196 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 169195 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment
Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino
Abstract:
Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.Keywords: EDL, Mars, mission, SPS, TPS
Procedia PDF Downloads 169194 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR
Authors: Hermalina Sinay, Estri L. Arumingtyas
Abstract:
The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku
Procedia PDF Downloads 299193 Rural Community Knowledge, Attitude and Perceptions of Consuming Dried Vegetables in Central Region of Tanzania
Authors: Radegunda Kessy, Justus Ochieng, Victor Afari-Sefa, Takemore Chagomoka, Ngoni Nenguwo
Abstract:
Vegetables are excellent sources of dietary fiber, vitamins, and minerals which constitute an indispensable constituent of diets, but in Tanzania and other Sub-Saharan African countries, they are not readily available all year round due to seasonal variations in the production cycle. Drying of vegetables is one of the traditional methods for food preservation known to man. The Dodoma and Singida regions of Tanzania are characterized by semi-arid agro-climate, thereby experiencing short seasonal supply of fresh vegetables followed by long drought in which dried vegetables become an alternative to meet high household demands. A primary survey of 244 of rural consumers was carried out to understand how knowledge, attitudes, and perceptions of rural consumers affect consumption of dried vegetables. The sample respondents were all found to be aware of open sun drying of vegetables while less than 50% of them were aware of solar-dried vegetables. Consumers were highly concerned with the hygiene, nutritional values, taste, drying method, freshness, color of dried vegetables, timely availability and easiness of cooking as important factors they consider before they purchase dried vegetables. Logit model results show that gender, income, years of consuming dried vegetables, awareness of the importance of solar dried vegetables vis-à-vis sun-dried alternatives and employment status influenced rural consumer’s decision to purchase dried vegetables. Preference on dried vegetables differs across the regions which are also important considerations for any future planned interventions. The findings imply that development partners and policymakers need to design better social marketing and promotion techniques for the enhanced adoption of solar drying technology, which will greatly improve the quality and utilization of dried vegetables by target households.Keywords: dried vegetables, postharvest management, sun drying, solar drying
Procedia PDF Downloads 200192 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)
Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar
Abstract:
One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.Keywords: SEBS, remote sensing, evapotranspiration, ETa
Procedia PDF Downloads 333191 The Impact of Heat Waves on Human Health: State of Art in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio
Abstract:
The earth system is subject to a wide range of human activities that have changed the ecosystem more rapidly and extensively in the last five decades. These global changes have a large impact on human health. The relationship between extreme weather events and mortality are widely documented in different studies. In particular, a number of studies have investigated the relationship between climatological variations and the cardiovascular and respiratory system. The researchers have become interested in the evaluation of the effect of environmental variations on the occurrence of different diseases (such as infarction, ischemic heart disease, asthma, respiratory problems, etc.) and mortality. Among changes in weather conditions, the heat waves have been used for investigating the association between weather conditions and cardiovascular events and cerebrovascular, using thermal indices, which combine air temperature, relative humidity, and wind speed. The effects of heat waves on human health are mainly found in the urban areas and they are aggravated by the presence of atmospheric pollution. The consequences of these changes for human health are of growing concern. In particular, meteorological conditions are one of the environmental aspects because cardiovascular diseases are more common among the elderly population, and such people are more sensitive to weather changes. In addition, heat waves, or extreme heat events, are predicted to increase in frequency, intensity, and duration with climate change. In this context, are very important public health and climate change connections increasingly being recognized by the medical research, because these might help in informing the public at large. Policy experts claim that a growing awareness of the relationships of public health and climate change could be a key in breaking through political logjams impeding action on mitigation and adaptation. The aims of this study are to investigate about the importance of interactions between weather variables and your effects on human health, focusing on Italy. Also highlighting the need to define strategies and practical actions of monitoring, adaptation and mitigation of the phenomenon.Keywords: climate change, illness, Italy, temperature, weather
Procedia PDF Downloads 248190 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia
Authors: Yihunie Hibstie Asres, Manny Mathuthu
Abstract:
Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.Keywords: NAA, Yebrage, Chemoga, macro/micronutrient
Procedia PDF Downloads 175189 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 144188 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 72