Search results for: matrix correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6039

Search results for: matrix correlation

5409 Interpretation and Clustering Framework for Analyzing ECG Survey Data

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 469
5408 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 227
5407 Effect of the Vertical Pressure on the ‎Electrical Behaviour of the Micro-Copper ‎Polyurethane Composite Films

Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi

Abstract:

Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the ‎growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These ‎composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were ‎made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness ‎lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of ‎micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron ‎microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under ‎pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not ‎conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under ‎pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a ‎significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 ‎S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable ‎coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element ‎method based on the representative volume element (FE-RVE) was successfully used to predict their electrical ‎behaviour under applied pressures. ‎

Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model

Procedia PDF Downloads 196
5406 Turbulent Flow in Corrugated Pipes with Helical Grooves

Authors: P. Mendes, H. Stel, R. E. M. Morales

Abstract:

This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.

Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation

Procedia PDF Downloads 481
5405 The Relationship between Body Esteem and Self-Esteem with Sport-Confidence Students

Authors: Saeid Motevalli, Siti Fatimah Azzahrah Binti Abd Mutalib, Mohd Sahandri Ghani Hamzah, Hazalizah Hamzah

Abstract:

The main purpose of the present study was to investigate the relationship between body esteem and self-esteem with sport-confidence among university students. This study was conducted by using the descriptive and correlational study design. Meanwhile, the method involved in this study was the online survey method. The population of the sample are mainly Universiti Pendidikan Sultan Idris (UPSI) students only which 120 participants were selected by cluster sampling method from two faculties named Fakulti Pembangunan Manusia (FPM) and Fakulti Sains Sukan dan Kejurulatihan (FSSKJ). The instrument used in this study was The Body-Esteem Scale (BES) by Franzoi and Shields (1984), Rosenberg Self-Esteem Scale (RSES) by Rosenberg (1965) and the Vealey’s Trait Sport-Confidence Inventory (TSCI) by (Vealey, 1986). The results of the Pearson product-moment correlation coefficient showed that there was a positive and moderate correlation between students’ body-esteem and sport-confidence and a negative and low correlation between students’ self-esteem and sport-confidence. Likewise, based on the entry method used all two predictor variables were significant in explaining sport confidence among UPSI students. In conclusion, it can be said that students’ sport-confidence affected by students’ self-esteem and body-esteem.

Keywords: body esteem, self-esteem, sport-confidence, students

Procedia PDF Downloads 148
5404 Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

Authors: Meareg Amare, Senait Aklog

Abstract:

Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

Keywords: electrochemical, lignin, caffeine, electrode

Procedia PDF Downloads 119
5403 Analysis of ECGs Survey Data by Applying Clustering Algorithm

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 351
5402 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater

Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze

Abstract:

The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.

Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite

Procedia PDF Downloads 121
5401 The Effects of Food Matrix and Different Excipient Foods on β-Carotene Bioaccessibility in Carrots

Authors: Birgul Hizlar, Sibel Karakaya

Abstract:

Nowadays, consumers are more and more aware of the benefits beyond basic nutrition provided by food and food compounds. Between these, carotenoids have been demonstrated to exhibit multiple health benefits (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). However, carotenoid bioaccessibility and bioavailability is generally rather low due to their specific localization in plant tissue and lipophilic nature. This situation is worldwide issue, since both developed and developing countries have their interest and benefits in increasing the uptake of carotenoids from the human diet. Recently, a new class of foods designed to improve the bioaccessibility/bioavailability of orally administered bioactive compounds is introduced: excipient foods. Excipient foods are specially designed foods which are prepared depending on the physicochemical properties of target bioactive compounds and increasing the bioavailability or bioaccessibility of bioactive compound. In this study, effects of food matrix (greating, boiling and mashing) and different excipient foods (olive oil, lemon juice, whey curd and dried artichoke leaf powder) on bioaccessibility of β-carotene in carrot were investigated by means of simulating in vitro gastrointestinal (GI) digestion. β-carotene contents of grated, boiled and mashed (after boiling process) carrots were 79.28, 147.63 and 151.19 μg/g respectively. No significant differences among boiled and mashed samples indicated that mashing process had no effect on the release of β-carotene from the food matrix (p > 0.05). On the contrary, mashing causes significant increase in the β-carotene bioaccessibility (p < 0.05). The highest β-carotene content was found in the mashed carrots incorporated with olive oil and lemon juice (C2). However, no significant differences between that sample and C1 (mashed carrot with lemon juice, olive oil, dried artichoke leaf powder), C3 (mashed carrot with addition of olive oil, lemon juice, whey curd) and). Similarly, the highest β-carotene bioaccessibility (50.26%) was found mashed C3 sample (p < 0.05). The increase in the bioaccessibility was approximately 5 fold and 50 fold when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. The results demonstrate that both, food matrix and excipient foods, are able to increase the bioaccessibility of β-carotene.

Keywords: bioaccessibility, carotenoids, carrot, β-carotene

Procedia PDF Downloads 383
5400 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 261
5399 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 80
5398 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 93
5397 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 420
5396 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 371
5395 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 590
5394 Efficacy of Collagen Matrix Implants in Phacotrabeculectomy with Mitomycin C at One Year

Authors: Lalit Tejwani, Reetika Sharma, Arun Singhvi, Himanshu Shekhar

Abstract:

Purpose: To assess the efficacy of collagen matrix implant (Ologen) in phacotrabeculectomy augmented with mitomycin C (MMC). Methods: A biodegradable collagen matrix (Ologen) was placed in the subconjunctival and subscleral space in twenty-two eyes of 22 patients with glaucoma and cataract who underwent combined phacoemulsification and trabeculectomy augmented with MMC. All of them were examined preoperatively and on the first postoperative day. They were followed for twelve months after surgery. Any intervention needed in follow-up period was noted. Any complication was recorded. The primary outcome measure was postoperative intraocular pressure at one year follow-up. Any additional postoperative treatments needed and adverse events were noted. Results: The mean age of patients included in the study was 57.77 ± 9.68 years (range=36 to 70 years). All the patients were followed for at least one year. Three patients had history of failed trabeculectomy. Fifteen patients had chronic angle closure glaucoma with cataract, five had primary open angle glaucoma with cataract, one had uveitic glaucoma with cataract, and one had juvenile open angle glaucoma with cataract. Mean preoperative IOP was 32.63 ± 8.29 mm Hg, eighteen patients were on oral antiglaucoma medicines. The mean postoperative IOP was 10.09 ± 2.65 mm Hg at three months, 10.36 ± 2.19 mm Hg at six months and 11.36 ± 2.72 mm Hg at one year follow up. No adverse effect related to Ologen was seen. Anterior chamber reformation was done in five patients, and three needed needling of bleb. Four patients needed additional antiglaucoma medications in the follow-up period. Conclusions: Combined phacotrabeculectomy with MMC with Ologen implantation appears to be a safe and effective option in glaucoma patients needing trabeculectomy with significant cataract. Comparative studies with longer duration of follow-up in larger number of patients are needed.

Keywords: combined surgery, ologen, phacotrabeculectomy, success

Procedia PDF Downloads 213
5393 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 192
5392 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: biodiesel density, correlation, equation of state, prediction

Procedia PDF Downloads 615
5391 Sexual Satifaction in Women with Polycystic Ovarian Syndrome

Authors: Nashi Khan, Amina Khalid

Abstract:

Aim: The purpose of this research was to find the psychiatric morbidity and level of sexual satisfaction among women with polycystic ovarian syndrome and their comparison with women with general medical conditions and to examine the correlation between psychiatric morbidity and sexual satisfaction among these women. Design: Cross sectional research design was used. Method: A total of 176 (M age = 30, SD = 5.83) women were recruited from both private and public sector hospitals in Pakistan. About 88 (50%) of the participants were diagnosed with polycystic ovarian syndrome (cases), whereas other 50% belonged to control group. Data were collected using semi structured interview. Sexual satisfaction scale for women (SSS-W) was administered to measure sexual satisfaction level and psychiatric morbidity was assessed by Symptom Checklist-Revised. Results: Results showed that participant’s depression and anxiety level had significant negative correlation with their sexual satisfaction level, whereas, anxiety and depression shared a significant positive correlation. There was a significant difference in the scores for sexual satisfaction, depression and anxiety for both cases and controls. These results suggested that women suffering from polycystic ovarian syndrome tend to be less sexually satisfied and experienced relatively more symptoms of depression and anxiety as compared to controls.

Keywords: level of sexual satisfaction, psychiatric morbidity, polycystic ovarian syndrome

Procedia PDF Downloads 462
5390 Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A is known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group had also MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.

Keywords: children, cortisol, fetuin A, morbid obesity, thyrotropin

Procedia PDF Downloads 179
5389 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 177
5388 Self-Esteem and Emotional Intelligence’s Association to Nutritional Status in Adolescent Schoolchildren in Chile

Authors: Peter Mc Coll, Alberto Caro, Chiara Gandolfo, Montserrat Labbe, Francisca Schnaidt, Michela Palazzi

Abstract:

Self-esteem and emotional intelligence are variables that are related to people's nutritional status. Self-esteem may be at low levels in people living with obesity, while emotional intelligence can play an important role in the way people living with obesity cope. The objective of the study was to measure the association between self-esteem and emotional intelligence to nutritional status in adolescent population. Methodology: A cross-sectional study was carried out with 179 adolescent schoolchildren between 13 and 19 years old from a public school. The objective was to evaluate nutritional status; weight and height were measured by calculating the body mass index and Z score. Self-esteem was evaluated using the Coopersmith Self-esteem Inventory adapted by Brinkmann and Segure. Emotional intelligence was measured using the Emotional Quotient Inventory: short, by Bar On, adapted questionnaire, translated into Spanish by López Zafra. For statistical analysis: Pearson's Chi-square test, Pearson's correlation, and odd ratio calculation were used, with a p value at a significance level < 5%. Results: The study group was composed of 71% female and 29% male. The nutritional status was distributed as eutrophic 41.9%, overweight 20.1%, and obesity 21.1%. In relation to self-esteem, 44.1% presented low and very low levels, without differences by gender. Emotional intelligence was distributed: low 3.4%, medium 81%, and high 13.4% -no differences according to gender. The association between nutritional status (overweight and obesity) with low and very low self-esteem, an odds ratio of 2.5 (95% CI 1.12 – 5.59) was obtained with a p-value = 0.02. The correlation analysis between the intrapersonal sub-dimension emotional intelligence scores and the Z score of nutritional status presented a negative correlation of r = - 0.209 with a p-value < 0.005. The correlation between emotional intelligence subdimension stress management with Z score presented a positive correlation of r = 0.0161 with a p-value < 0.05. In conclusion, the group of adolescents studied had a high prevalence of overweight and obesity, a high prevalence of low self-esteem, and a high prevalence of average emotional intelligence. Overweight and obese adolescents were 2.5 times more likely to have low self-esteem. As overweight and obesity increase, self-esteem decreases, and the ability to manage stress increases.

Keywords: self-esteem, emotional intelligence, obesity, adolescent, nutritional status

Procedia PDF Downloads 59
5387 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions

Authors: Yuyang Cheng, Marcos Escobar-Anel

Abstract:

This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.

Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, veri cation theorem

Procedia PDF Downloads 152
5386 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh

Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali

Abstract:

In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.

Keywords: air quality, particles, cross correlation, seasonality

Procedia PDF Downloads 105
5385 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.

Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy

Procedia PDF Downloads 150
5384 Flexural Properties of Carbon/Polypropylene Composites: Influence of Matrix Forming Polypropylene in Fiber, Powder, and Film States

Authors: Vijay Goud, Ramasamy Alagirusamy, Apurba Das, Dinesh Kalyanasundaram

Abstract:

Thermoplastic composites render new opportunities as effective processing technology while crafting newer complications into processing. One of the notable challenges is in achieving thorough wettability that is significantly deterred by the high viscosity of the long molecular chains of the thermoplastics. As a result of high viscosity, it is very difficult to impregnate the resin into a tightly interlaced textile structure to fill the voids present in the structure. One potential solution to the above problem, is to pre-deposit resin on the fiber, prior to consolidation. The current study compares DREF spinning, powder coating and film stacking methods of predeposition of resin onto fibers. An investigation into the flexural properties of unidirectional composites (UDC) produced from blending of carbon fiber and polypropylene (PP) matrix in varying forms of fiber, powder and film are reported. Dr. Ernst Fehrer (DREF) yarns or friction spun hybrid yarns were manufactured from PP fibers and carbon tows. The DREF yarns were consolidated to yield unidirectional composites (UDCs) referred to as UDC-D. PP in the form of powder was coated on carbon tows by electrostatic spray coating. The powder-coated towpregs were consolidated to form UDC-P. For the sake of comparison, a third UDC referred as UDC-F was manufactured by the consolidation of PP films stacked between carbon tows. The experiments were designed to yield a matching fiber volume fraction of about 50 % in all the three UDCs. A comparison of mechanical properties of the three composites was studied to understand the efficiency of matrix wetting and impregnation. Approximately 19% and 68% higher flexural strength were obtained for UDC-P than UDC-D and UDC-F respectively. Similarly, 25% and 81% higher modulus were observed in UDC-P than UDC-D and UDC-F respectively. Results from micro-computed tomography, scanning electron microscopy, and short beam tests indicate better impregnation of PP matrix in UDC-P obtained through electrostatic spray coating process and thereby higher flexural strength and modulus.

Keywords: DREF spinning, film stacking, flexural strength, powder coating, thermoplastic composite

Procedia PDF Downloads 222
5383 3 Dimensional (3D) Assesment of Hippocampus in Alzheimer’s Disease

Authors: Mehmet Bulent Ozdemir, Sultan Çagirici, Sahika Pinar Akyer, Fikri Turk

Abstract:

Neuroanatomical appearance can be correlated with clinical or other characteristics of illness. With the introduction of diagnostic imaging machines, producing 3D images of anatomic structures, calculating the correlation between subjects and pattern of the structures have become possible. The aim of this study is to examine the 3D structure of hippocampus in cases with Alzheimer disease in different dementia severity. For this purpose, 62 female and 38 male- 68 patients’s (age range between 52 and 88) MR scanning were imported to the computer. 3D model of each right and left hippocampus were developed by a computer aided propramme-Surf Driver 3.5. Every reconstruction was taken by the same investigator. There were different apperance of hippocampus from normal to abnormal. In conclusion, These results might improve the understanding of the correlation between the morphological changes in hippocampus and clinical staging in Alzheimer disease.

Keywords: Alzheimer disease, hippocampus, computer-assisted anatomy, 3D

Procedia PDF Downloads 481
5382 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 152
5381 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 395
5380 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 439