Search results for: iterative methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15538

Search results for: iterative methods

14908 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 191
14907 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 248
14906 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 380
14905 Raman, Atomic Force Microscopy and Mass Spectrometry for Isotopic Ratios Methods Used to Investigate Human Dentine and Enamel

Authors: Nicoleta Simona Vedeanu, Rares Stiufiuc, Dana Alina Magdas

Abstract:

A detailed knowledge of the teeth structure is mandatory to understand and explain the defects and the dental pathology, but especially to take a correct decision regarding dental prophylaxis and treatment. The present work is an alternative study to the traditional investigation methods used in dentistry, a study based on the use of modern, sensitive physical methods to investigate human enamel and dentin. For the present study, several teeth collected from patients of different ages were used for structural and dietary investigation. The samples were investigated by Raman spectroscopy for the molecular structure analysis of dentin and enamel, atomic force microscopy (AFM) to view the dental topography at the micrometric size and mass spectrometry for isotopic ratios as a fingerprint of patients’ personal diet. The obtained Raman spectra and their interpretation are in good correlation with the literature and may give medical information by comparing affected dental structures with healthy ones. AFM technique gave us the possibility to study in details the dentin and enamel surface to collect information about dental hardness or dental structural changes. δ¹³C values obtained for the studied samples can be classified in C4 category specific to young people and children diet (sweets, cereals, juices, pastry). The methods used in this attempt furnished important information about dentin and enamel structure and dietary habits and each of the three proposed methods can be extended at a larger level in the study of the teeth structure.

Keywords: AFM, dentine, enamel, Raman spectroscopy

Procedia PDF Downloads 145
14904 Assessment of Residual Stress on HDPE Pipe Wall Thickness

Authors: D. Sersab, M. Aberkane

Abstract:

Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.

Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness

Procedia PDF Downloads 338
14903 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 141
14902 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Yassir AbdelRazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: ant colony, construction site layout, optimization, genetic algorithms

Procedia PDF Downloads 383
14901 Effect of Dehydration Methods of the Proximate Composition, Mineral Content and Functional Properties of Starch Flour Extracted from Maize

Authors: Olakunle M. Makanjuola, Adebola Ajayi

Abstract:

Effect of the dehydrated method on proximate, functional and mineral properties of corn starch was evaluated. The study was carried and to determine the proximate, functional and mineral properties of corn starch produced using three different drying methods namely (sun) (oven) and (cabinet) drying methods. The corn starch was obtained by cleaning, steeping, milling, sieving, dewatering and drying corn starch was evaluated for proximate composition, functional properties, and mineral properties to determine the nutritional properties, moisture, crude protein, crude fat, ash, and carbohydrate were in the range of 9.35 to 12.16, 6.5 to 10.78 1.08 to 2.5, 1.08 to 2.5, 4.0 to 5.2, 69.58 to 75.8% respectively. Bulk density range between 0.610g/dm3 to 0.718 g/dm3, water, and oil absorption capacities range between 116.5 to 117.25 and 113.8 to 117.25 ml/g respectively. Swelling powder had value varying from 1.401 to 1.544g/g respectively. The results indicate that the cabinet method had the best result item of the quality attribute.

Keywords: starch flour, maize, dehydration, cabinet dryer

Procedia PDF Downloads 238
14900 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 386
14899 Between Efficacy and Danger: Narratives of Female University Students about Emergency Contraception Methods

Authors: Anthony Idowu Ajayi, Ezebunwa Ethelbert Nwokocha, Wilson Akpan, Oladele Vincent Adeniyi

Abstract:

Studies on emergency contraception (EC) mostly utilise quantitative methods and focus on medically approved drugs for the prevention of unwanted pregnancies. This methodological bias necessarily obscures insider perspectives on sexual behaviour, particularly on why specific methods are utilized by women who seek to prevent unplanned pregnancies. In order to privilege this perspective, with a view to further enriching the discourse and policy on the prevention and management of unplanned pregnancies, this paper brings together the findings from several focus groups and in-depth interviews conducted amongst unmarried female undergraduate students in two Nigerian universities. The study found that while the research participants had good knowledge of the consequences of unprotected sexual intercourses - with abstinence and condom widely used - participants’ willingness to rely only on medically sound measures to prevent unwanted pregnancies was not always mediated by such knowledge. Some of the methods favored by participants appeared to be those commonly associated with people of low socio-economic status in the society where the study was conducted. Medically unsafe concoctions, some outright dangerous, were widely believed to be efficacious in preventing unwanted pregnancy. Furthermore, respondents’ narratives about their sexual behaviour revealed that inadequate sex education, socio-economic pressures, and misconceptions about the efficacy of “crude” emergency contraception methods were all interrelated. The paper therefore suggests that these different facets of the unplanned pregnancy problem should be the focus of intervention.

Keywords: unplanned pregnancy, unsafe abortion, emergency contraception, concoctions

Procedia PDF Downloads 424
14898 Sleep Apnea Hypopnea Syndrom Diagnosis Using Advanced ANN Techniques

Authors: Sachin Singh, Thomas Penzel, Dinesh Nandan

Abstract:

Accurate identification of Sleep Apnea Hypopnea Syndrom Diagnosis is difficult problem for human expert because of variability among persons and unwanted noise. This paper proposes the diagonosis of Sleep Apnea Hypopnea Syndrome (SAHS) using airflow, ECG, Pulse and SaO2 signals. The features of each type of these signals are extracted using statistical methods and ANN learning methods. These extracted features are used to approximate the patient's Apnea Hypopnea Index(AHI) using sample signals in model. Advance signal processing is also applied to snore sound signal to locate snore event and SaO2 signal is used to support whether determined snore event is true or noise. Finally, Apnea Hypopnea Index (AHI) event is calculated as per true snore event detected. Experiment results shows that the sensitivity can reach up to 96% and specificity to 96% as AHI greater than equal to 5.

Keywords: neural network, AHI, statistical methods, autoregressive models

Procedia PDF Downloads 119
14897 Producing TPU/Propolis Nanofibrous Membrane as Wound Dressing

Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç

Abstract:

Wound dressings have strategically and economic importance considering increase of chronic wounds in the world. In this study, TPU nanofibrous membranes containing propolis as wound dressing are produced by two different methods. Firstly, TPU solution and propolis extract were mixed and this solution was electrospun. The other method is that TPU/propolis blend was centrifugally spun. Properties of nanofibrous membranes obtained by these methods were compared. While realizing the experiments, both systems were optimized to produce nanofibers with nearly same average fiber diameter.

Keywords: nanofiber, wound dressing, electrospinning, centrifugal spinning

Procedia PDF Downloads 455
14896 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems

Authors: Mojtaba Saeedinezhad, Sarah Yousefi

Abstract:

In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.

Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making

Procedia PDF Downloads 346
14895 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography

Authors: Y. Laib Dit Leksir, S. Bouhouche

Abstract:

Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.

Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment

Procedia PDF Downloads 476
14894 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction

Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai

Abstract:

A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.

Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment

Procedia PDF Downloads 146
14893 Improving the Uptake of Community-Based Multidrug-Resistant Tuberculosis Treatment Model in Nigeria

Authors: A. Abubakar, A. Parsa, S. Walker

Abstract:

Despite advances made in the diagnosis and management of drug-sensitive tuberculosis (TB) over the past decades, treatment of multidrug-resistant tuberculosis (MDR-TB) remains challenging and complex particularly in high burden countries including Nigeria. Treatment of MDR-TB is cost-prohibitive with success rate generally lower compared to drug-sensitive TB and if care is not taken it may become the dominant form of TB in future with many treatment uncertainties and substantial morbidity and mortality. Addressing these challenges requires collaborative efforts thorough sustained researches to evaluate the current treatment guidelines, particularly in high burden countries and prevent progression of resistance. To our best knowledge, there has been no research exploring the acceptability, effectiveness, and cost-effectiveness of community-based-MDR-TB treatment model in Nigeria, which is among the high burden countries. The previous similar qualitative study looks at the home-based management of MDR-TB in rural Uganda. This research aimed to explore patient’s views and acceptability of community-based-MDR-TB treatment model and to evaluate and compare the effectiveness and cost-effectiveness of community-based versus hospital-based MDR-TB treatment model of care from the Nigerian perspective. Knowledge of patient’s views and acceptability of community-based-MDR-TB treatment approach would help in designing future treatment recommendations and in health policymaking. Accordingly, knowledge of effectiveness and cost-effectiveness are part of the evidence needed to inform a decision about whether and how to scale up MDR-TB treatment, particularly in a poor resource setting with limited knowledge of TB. Mixed methods using qualitative and quantitative approach were employed. Qualitative data were obtained using in-depth semi-structured interviews with 21 MDR-TB patients in Nigeria to explore their views and acceptability of community-based MDR-TB treatment model. Qualitative data collection followed an iterative process which allowed adaptation of topic guides until data saturation. In-depth interviews were analyzed using thematic analysis. Quantitative data on treatment outcomes were obtained from medical records of MDR-TB patients to determine the effectiveness and direct and indirect costs were obtained from the patients using validated questionnaire and health system costs from the donor agencies to determine the cost-effectiveness difference between community and hospital-based model from the Nigerian perspective. Findings: Some themes have emerged from the patient’s perspectives indicating preference and high acceptability of community-based-MDR-TB treatment model by the patients and mixed feelings about the risk of MDR-TB transmission within the community due to poor infection control. The result of the modeling from the quantitative data is still on course. Community-based MDR-TB care was seen as the acceptable and most preferred model of care by the majority of the participants because of its convenience which in turn enhanced recovery, enables social interaction and offer more psychosocial benefits as well as averted productivity loss. However, there is a need to strengthen this model of care thorough enhanced strategies that ensure guidelines compliance and infection control in order to prevent the progression of resistance and curtail community transmission.

Keywords: acceptability, cost-effectiveness, multidrug-resistant TB treatment, community and hospital approach

Procedia PDF Downloads 122
14892 Comparative Analysis of Glycated Hemoglobin (hba1c) Between HPLC and Immunoturbidimetry Method in Type II Diabetes Mellitus Patient

Authors: Intanri Kurniati, Raja Iqbal Mulya Harahap, Agustyas Tjiptaningrum, Reni Zuraida

Abstract:

Background: Diabetes mellitus is still increasing and has become a health and social burden in the world. It is known that glycation among various proteins is increased in diabetic patients compared with non-diabetic subjects. Some of these glycated proteins are suggested to be involved in the development and progression of chronic diabetic complications. Among these glycated proteins, glycated hemoglobin (HbA1C) is commonly used as the gold standard index of glycemic control in the clinical setting. HbA1C testing has some methods, and the most commonly used is immunoturbidimetry. This research aimed to compare the HbA1c level between immunoturbidimetry and HbA1C level in T2DM patients. Methods: This research involves 77 patients from Abd Muluk Hospital Bandar Lampung; the patient was asked for consent in this research, then underwent phlebotomy to be tested for HbA1C; the sample was then examined for HbA1C with Turbidimetric Inhibition Immunoassay (TINIA) and High-Performance Liquid Chromatography (HPLC) method. Result: Mean± SD of the samples with the TINIA method was 9.2±1,2; meanwhile, the level HbA1C with the HPLC method is 9.6±1,2. The t-test showed no significant difference between the group subjects. (p<0.05). It was proposed that the two methods have high suitability in testing, and both are eligibly used for the patient. Discussion: There was no significant difference among research subjects, indicating that the high conformity of the two methods is suitable to be used for monitoring patients clinically. Conclusion: There is increasing in HbA1C level in a patient with T2DM measured with HPLC and or Turbidimetric Inhibition Immunoassay (TINIA) method, and there were no significant differences among those methods.

Keywords: diabetes mellitus, glycated albumin, HbA1C, HPLC, immunoturbidimetry

Procedia PDF Downloads 99
14891 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.

Keywords: climate change, ETP, MODIS, GIEC scenarios

Procedia PDF Downloads 100
14890 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids

Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin

Abstract:

In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.

Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena

Procedia PDF Downloads 283
14889 Comparison of Safety Factor Evaluation Methods for Buckling of High Strength Steel Welded Box Section Columns

Authors: Balazs Somodi, Balazs Kovesdi

Abstract:

In the research praxis of civil engineering the statistical evaluation of experimental and numerical investigations is an essential task in order to compare the experimental and numerical resistances of a specific structural problem with the proposed resistances of the standards. However, in the standards and in the international literature there are several different safety factor evaluation methods that can be used to check the necessary safety level (e.g.: 5% quantile level, 2.3% quantile level, 1‰ quantile level, γM partial safety factor, γM* partial safety factor, β reliability index). Moreover, in the international literature different calculation methods could be found even for the same safety factor as well. In the present study the flexural buckling resistance of high strength steel (HSS) welded closed sections are analyzed. The authors investigated the flexural buckling resistances of the analyzed columns by laboratory experiments. In the present study the safety levels of the obtained experimental resistances are calculated based on several safety approaches and compared with the EN 1990. The results of the different safety approaches are compared and evaluated. Based on the evaluation tendencies are identified and the differences between the statistical evaluation methods are explained.

Keywords: flexural buckling, high strength steel, partial safety factor, statistical evaluation

Procedia PDF Downloads 160
14888 Self-Awareness on Social Work Courses: A Study of Students Perceptions of Teaching Methods in an English University

Authors: Deborah Amas

Abstract:

Global accreditation standards require Higher Education Institutions to ensure social work students develop self-awareness by reflecting on their personal values and critically evaluating how these influence their thinking for professional practice. The knowledge base indicates there are benefits and vulnerabilities for students when they self-reflect and more needs to be understood about the learning environments that nurture self-awareness. The connection between teaching methods and self-awareness is of interest in this paper which reports findings from an on-line survey with students on BA and MA qualifying social work programs in an English university (n=120). Students were asked about the importance of self-awareness and their experiences of teaching methods for self-reflection. Generally, students thought that self-awareness is of high importance in their education. Students also shared stories that illuminated deeper feelings about the potential risks associated with self-disclosure. The findings indicate that students appreciate safe opportunities for self-reflection, but can be wary of associated assessments or feeling judged. The research supports arguments to qualitatively improve facilitation of self-awareness through the curriculum.

Keywords: reflection, self-awareness, self-reflection, social work education

Procedia PDF Downloads 300
14887 Low Cost Technique for Measuring Luminance in Biological Systems

Authors: N. Chetty, K. Singh

Abstract:

In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.

Keywords: tissue phantoms, scattering coefficient, albedo, low-cost method

Procedia PDF Downloads 271
14886 Methods for Early Detection of Invasive Plant Species: A Case Study of Hueston Woods State Nature Preserve

Authors: Suzanne Zazycki, Bamidele Osamika, Heather Craska, Kaelyn Conaway, Reena Murphy, Stephanie Spence

Abstract:

Invasive Plant Species (IPS) are an important component of effective preservation and conservation of natural lands management. IPS are non-native plants which can aggressively encroach upon native species and pose a significant threat to the ecology, public health, and social welfare of a community. The presence of IPS in U.S. nature preserves has caused economic costs, which has estimated to exceed $26 billion a year. While different methods have been identified to control IPS, few methods have been recognized for early detection of IPS. This study examined identified methods for early detection of IPS in Hueston Woods State Nature Preserve. Mixed methods research design was adopted in this four-phased study. The first phase entailed data gathering, the phase described the characteristics and qualities of IPS and the importance of early detection (ED). The second phase explored ED methods, Geographic Information Systems (GIS) and Citizen Science were discovered as ED methods for IPS. The third phase of the study involved the creation of hotspot maps to identify likely areas for IPS growth. While the fourth phase involved testing and evaluating mobile applications that can support the efforts of citizen scientists in IPS detection. Literature reviews were conducted on IPS and ED methods, and four regional experts from ODNR and Miami University were interviewed. A questionnaire was used to gather information about ED methods used across the state. The findings revealed that geospatial methods, including Unmanned Aerial Vehicles (UAVs), Multispectral Satellites (MSS), and Normalized Difference Vegetation Index (NDVI), are not feasible for early detection of IPS, as they require GIS expertise, are still an emerging technology, and are not suitable for every habitat for the ED of IPS. Therefore, Other ED methods options were explored, which include predicting areas where IPS will grow, which can be done through monitoring areas that are like the species’ native habitat. Through literature review and interviews, IPS are known to grow in frequently disturbed areas such as along trails, shorelines, and streambanks. The research team called these areas “hotspots” and created maps of these hotspots specifically for HW NP to support and narrow the efforts of citizen scientists and staff in the ED of IPS. The results further showed that utilizing citizen scientists in the ED of IPS is feasible, especially through single day events or passive monitoring challenges. The study concluded that the creation of hotspot maps to direct the efforts of citizen scientists are effective for the early detection of IPS. Several recommendations were made, among which is the creation of hotspot maps to narrow the ED efforts as citizen scientists continues to work in the preserves and utilize citizen science volunteers to identify and record emerging IPS.

Keywords: early detection, hueston woods state nature preserve, invasive plant species, hotspots

Procedia PDF Downloads 103
14885 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 158
14884 Transforming Personal Healthcare through Patient Engagement: An In-Depth Analysis of Tools and Methods for the Digital Age

Authors: Emily Hickmann, Peggy Richter, Maren Kaehlig, Hannes Schlieter

Abstract:

Patient engagement is a cornerstone of high-quality care and essential for patients with chronic diseases to achieve improved health outcomes. Through digital transformation, possibilities to engage patients in their personal healthcare have multiplied. However, the exploitation of this potential is still lagging. To support the transmission of patient engagement theory into practice, this paper’s objective is to give a state-of-the-art overview of patient engagement tools and methods. A systematic literature review was conducted. Overall, 56 tools and methods were extracted and synthesized according to the four attributes of patient engagement, i.e., personalization, access, commitment, and therapeutic alliance. The results are discussed in terms of their potential to be implemented in digital health solutions under consideration of the “computers are social actors” (CASA) paradigm. It is concluded that digital health can catalyze patient engagement in practice, and a broad future research agenda is formulated.

Keywords: chronic diseases, digitalization, patient-centeredness, patient empowerment, patient engagement

Procedia PDF Downloads 117
14883 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia

Authors: S. Cencek, A. Markun

Abstract:

Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.

Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines

Procedia PDF Downloads 234
14882 French Language Teaching in Nigeria and Future with Technology

Authors: Chidiebere Samuel Ijeoma

Abstract:

The impact and importance of technology in all domains of existence cannot be overemphasized. It is like a double-edged sword which can be both constructive and destructive. The paper, therefore, tends to evaluate the impact of technology so far in the teaching and learning of French language in Nigeria. According to the study, the traditional methods of teaching French as a Foreign Language and recognized as our cultural methods of knowledge transfer are being fast replaced by digitalization in teaching. This, the research tends to portray and suggest the best way forward. In the Nigerian Primary Education System, the use of some local and cultural Instructional materials (teaching aids) is now almost history which the paper frowns at. Consequently, the study has these questions to ask?; Where are the chalks and blackboards? Where are the ‘Handworks’ (local brooms) submitted by school children as part of their Continuous Assessment? Finally, the research is in no way against the application of technology in the Nigerian French Language Teaching System but tries to draw a curtain between Technological methods of teaching French as a Foreign Language and the Original Nigerian System of teaching the language before the arrival of technology.

Keywords: French language teaching, future, impact, importance of technology

Procedia PDF Downloads 355
14881 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 207
14880 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
14879 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 157