Search results for: inference extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2284

Search results for: inference extraction

1654 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L

Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli

Abstract:

Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.

Keywords: artemisia absinthium, biological activities, essential oil, extraction processes

Procedia PDF Downloads 341
1653 Justitium: Endangered Species and Humanitarian Interventions in the Anthropocene Era

Authors: Eleni Panagiotarakou

Abstract:

This paper argues that humans have a collective moral responsibility to help wild animals during the Anthropocene era. Seen from the perspective of deontic logic, this moral responsibility did not exist in the Holocene era (ca. 11,700 BC-1945 AD) on account of humanity’s limited impact on the natural environment. By contrast in the Anthropocene, human activities are causing significant disturbances to planetary ecosystems and by inference to wildlife communities. Under these circumstances controversial and deeply regrettable interventional methods such as Managed Relocations (MR) and synthetic biology should be expanded and become policy measures despite their known and unknown risks. The main rationale for the above stems from the fact that traditional management strategies are simply insufficient in the Anthropocene. If the same anthropogenic activities continue unabated they risk triggering a sixth mass species extinction.

Keywords: anthropocene, humanitarian interventions, managed relocations, species extinctions, synthetic biology

Procedia PDF Downloads 249
1652 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network

Authors: Powei Happiness Kerry

Abstract:

Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.  

Keywords: Internet of Things, radiofrequency, electromagnetic radiation, information and communications technology, ICT, 5G

Procedia PDF Downloads 134
1651 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 257
1650 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 464
1649 Hydrogeological Study of Shallow and Deep Aquifers in Balaju-Boratar Area, Kathmandu, Central Nepal

Authors: Hitendra Raj Joshi, Bipin Lamichhane

Abstract:

Groundwater is the main source of water for the industries of Balaju Industrial District (BID) and the denizens of Balaju-Boratar area. The quantity of groundwater is in a fatal condition in the area than earlier days. Water levels in shallow wells have highly lowered and deep wells are not providing an adequate amount of water as before because of higher extraction rate than the recharge rate. The main recharge zone of the shallow aquifer lies at the foot of Nagarjuna mountain, where recent colluvial debris are accumulated. Urbanization in the area is the main reason for decreasing water table. Recharge source for the deep aquifer in the region is aquiclude leakage. Sand layer above the Kalimati clay is the shallow aquifer zone, which is limited only in Balaju and eastern part of the Boratar, while the layer below the Kalimati clay spreading around Gongabu, Machhapohari, and Balaju area is considered as a potential area of deep aquifer. Over extraction of groundwater without considering water balance in the aquifers may dry out the source and can initiate the land subsidence problem. Hence, all the responsible of the industries in BID area and the denizens of Balaju-Boratar area should be encouraged to practice artificial groundwater recharge.

Keywords: aquiclude leakage, Kalimati clay, groundwater recharge

Procedia PDF Downloads 506
1648 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 145
1647 Extraction and Antibacterial Studies of Oil from Three Mango Kernel Obtained from Makurdi, Nigeria

Authors: K. Asemave, D. O. Abakpa, T. T. Ligom

Abstract:

The ability of bacteria to develop resistance to many antibiotics cannot be undermined, given the multifaceted health challenges in the present times. For this reason, a lot of attention is on botanicals and their products in search of new antibacterial agents. On the other hand, mango kernel oils (MKO) can be heavily valorized by taking advantage of the myriads bioactive phytochemicals it contains. Herein, we validated the use of MKO as bioactive agent against bacteria. The MKOs for the study were extracted by soxhlet means with ethanol and hexane for 4 h from 3 different mango kernels, namely; 'local' (sample A), 'julie' (sample B), and 'john' (sample C). Prior to the extraction, ground fine particles of the kernels were obtained from the seed kernels dried in oven at 100 °C for 8 h. Hexane gave higher yield of the oils than ethanol. It was also qualitatively confirmed that the mango kernel oils contain some phytochemicals such as phenol, quinone, saponin, and terpenoid. The results of the antibacterial activities of the MKO against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) at different concentrations showed that the oils extracted with ethanol gave better antibacterial properties than those of the hexane. More so, the bioactivities were best with the local mango kernel oil. Indeed this work has completely validated the previous claim that MKOs are effective antibacterial agents. Thus, these oils (especially the ethanol-derived ones) can be used as bacteriostatic and antibacterial agents in say food, cosmetics, and allied industries.

Keywords: bacteria, mango, kernel, oil, phytochemicals

Procedia PDF Downloads 153
1646 Extracting Therapeutic Grade Essential Oils from the Lamiaceae Plant Family in the United Arab Emirates (UAE): Highlights on Great Possibilities and Sever Difficulties

Authors: Suzan M. Shahin, Mohammed A. Salem

Abstract:

Essential oils are expensive phytochemicals produced and extracted from specific species belonging to particular families in the plant kingdom. In the United Arab Emirates country (UAE), which is located in the arid region of the world, nine species, from the Lamiaceae family, having the capability to produce therapeutic grade essential oils. These species include; Mentha spicata, Ocimum forskolei, Salvia macrosiphon, Salvia aegyptiaca, Salvia macilenta, Salvia spinosa, Teucrium polium, Teucrium stocksianum, and Zataria multiflora. Although, such potential species are indigenous to the UAE, however, there are almost no studies available to investigate the chemical composition and the quality of the extracted essential oils under the UAE climatological conditions. Therefore, great attention has to be given to such valuable natural resources, through conducting highly supported research projects, tailored to the UAE conditions, and investigating different extraction techniques, including the application of the latest available technologies, such as superficial fluid CO2. This is crucially needed; in order to accomplish the greatest possibilities in the medicinal field, specifically in the discovery of new therapeutic chemotypes, as well as, to achieve the sustainability of this natural resource in the country.

Keywords: essential oils, extraction techniques, Lamiaceae, traditional medicine, United Arab Emirates (UAE)

Procedia PDF Downloads 459
1645 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 349
1644 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 146
1643 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study

Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner

Abstract:

Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.

Keywords: propensity score, stratification, emprical distribution, average treatment effect

Procedia PDF Downloads 96
1642 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 26
1641 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 56
1640 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)

Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour

Abstract:

Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.

Keywords: standpipe, diver, FOCS, monitoring, Raman scattering

Procedia PDF Downloads 357
1639 Feasibility of Chicken Feather Waste as a Renewable Resource for Textile Dyeing Processes

Authors: Belayihun Missaw

Abstract:

Cotton cationization is an emerging area that solves the environmental problems associated with the reactive dyeing of cotton. In this study, keratin hydrolysate cationizing agent from chicken feather was extracted and optimized to eliminate the usage of salt during dyeing. Cationization of cotton using the extracted keratin hydrolysate and dyeing of the cationized cotton without salt was made. The effect of extraction parametric conditions like concentration of caustic soda, temperature and time were studied on the yield of protein from chicken feather and colour strength (K/S) values, and these process conditions were optimized. The optimum extraction conditions were. 25g/l caustic soda, at 500C temperature and 105 minutes with average yield = 91.2% and 4.32 colour strength value. The effect of salt addition, pH and concentration of cationizing agent on yield colour strength was also studied and optimized. It was observed that slightly acidic condition with 4% (% owf) concentration of cationizing agent gives a better dyeability as compared to normal cotton reactive dyeing. The physical properties of cationized-dyed fabric were assessed, and the result reveals that the cationization has a similar effect as normal dyeing of cotton. The cationization of cotton with keratin extract was found to be successful and economically viable.

Keywords: cotton materials, cationization, reactive dye, keratin hydrolysate

Procedia PDF Downloads 63
1638 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution

Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang

Abstract:

Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.

Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution

Procedia PDF Downloads 158
1637 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
1636 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 128
1635 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
1634 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
1633 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses

Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan

Abstract:

Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.

Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis

Procedia PDF Downloads 367
1632 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand

Authors: Hamed Saremi

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: anfis, dematel, brand, cosmetic product, brand value

Procedia PDF Downloads 409
1631 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification

Authors: Malgorzata Schwab, Ashis Kumer Biswas

Abstract:

In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.

Keywords: trusted, neural, invertible, API

Procedia PDF Downloads 146
1630 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 365
1629 To Study the Effect of Drying Temperature Towards Extraction of Aquilaria subintegra Dry Leaves Using Vacuum Far Infrared

Authors: Tengku Muhammad Rafi Nazmi Bin Tengku Razali, Habsah Alwi

Abstract:

This article based on effect of temperature towards extraction of Aquilaria Subintegra. Aquilaria Subintegra which its main habitat is in Asia-tropical and particularly often found in its native which is Thailand. There is claim which is Aquilaria Subintegra contains antipyretic properties that helps fight fever. Research nowadays also shown that paracetamol consumed bring bad effect towards consumers. This sample will first dry using Vacuum Far Infrared which provides better drying than conventional oven. Soxhlet extractor used to extract oil from sample. Gas Chromatography Mass Spectrometer used to analyze sample to determine its compound. Objective from this research was to determine the active ingredients that exist in the Aquilaria Subintegra leaves and to determine whether compound of Acetaminophen exist or not inside the leaves. Moisture content from 400C was 80%, 500C was 620% and 600C was 36%. The greater temperature resulting lower moisture content inside sample leaves. 7 components were identified in sample T=400C while only 5 components were identified in sample at T=50C and T=60C. Four components were commonly identified in three sample which is 1n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, methyl ester (z,z,z), Vitamin E and Squalene. Further studies are needed with new series of temperature to refine the best results.

Keywords: aquilaria subintegra, vacuum far infrared, SOXHLET extractor, gas chromatography mass spectrometer, paracetamol

Procedia PDF Downloads 484
1628 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
1627 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development

Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola

Abstract:

In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.

Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications

Procedia PDF Downloads 595
1626 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 512
1625 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 287