Search results for: implementation of nep-2020. outcome based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35661

Search results for: implementation of nep-2020. outcome based learning

35031 Task-Based Teaching for Developing Communication Skills in Second Language Learners

Authors: Geeta Goyal

Abstract:

Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.

Keywords: communication skills, English, second language, task-based teaching

Procedia PDF Downloads 87
35030 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 172
35029 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services

Authors: Carlos V. Gonzalez

Abstract:

Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.

Keywords: harm, patients, resilience, safety, mental illness, disability

Procedia PDF Downloads 447
35028 Integrating Service Learning into a Business Analytics Course: A Comparative Investigation

Authors: Gokhan Egilmez, Erika Hatfield, Julie Turner

Abstract:

In this study, we investigated the impacts of service-learning integration on an undergraduate level business analytics course from multiple perspectives, including academic proficiency, community awareness, engagement, social responsibility, and reflection. We assessed the impact of the service-learning experience by using a survey developed primarily based on the literature review and secondarily on an ad hoc group of researchers. Then, we implemented the survey in two sections, where one of the sections was a control group. We compared the results of the empirical survey visually and statistically.

Keywords: business analytics, service learning, experiential education, statistical analysis, survey research

Procedia PDF Downloads 111
35027 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 110
35026 Preoperative 3D Planning and Reconstruction of Mandibular Defects for Patients with Oral Cavity Tumors

Authors: Janis Zarins, Kristaps Blums, Oskars Radzins, Renars Deksnis, Atis Svare, Santa Salaka

Abstract:

Wide tumor resection remains the first choice method for tumors of the oral cavity. Nevertheless, remained tissue defect impacts patients functional and aesthetical outcome, which could be improved using microvascular tissue transfers. Mandibular reconstruction is challenging due to the complexity of composite tissue defects and occlusal relationships for normal eating, chewing, and pain free jaw motions. Individual 3-D virtual planning would provide better symmetry and functional outcome. The main goal of preoperative planning is to develop a customized surgical approach with patient specific cutting guides of the mandible, osteotomy guides of the fibula, pre-bended osteosynthesis plates to perform more precise reconstruction, to decrease the surgery time and reach the best outcome. Our study is based on the analysis of 32 patients operated on between 2019 to 2021. All patients underwent mandible reconstruction with vascularized fibula flaps. Patients characteristics, surgery profile, survival, functional outcome, and quality of life was evaluated. Preoperative planning provided a significant decrease of surgery time and the best arrangement of bone closely similar as before the surgery. In cases of bone asymmetry, deformity and malposition, a new mandible was created using 3D planning to restore the appearance of lower jaw anatomy and functionality.

Keywords: mandibular, 3D planning, cutting guides, fibula flap, reconstruction

Procedia PDF Downloads 126
35025 Addressing Differentiation Using Mobile-Assisted Language Learning

Authors: Ajda Osifo, Fatma Elshafie

Abstract:

Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.

Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning

Procedia PDF Downloads 417
35024 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 150
35023 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 306
35022 Information and Communication Technologies-Based Urban Spaces: From Planning and Design to Implementation

Authors: Yountaik Leem, Kwang Woo Nam, Sang Ho Lee, Tae Heon Moon

Abstract:

As to the development of the capitalist economy, local governments put their focuses on economic growth and quality of life including the management of declined urban area. Together with the rapid advances in ICTs (information and communication technologies) Korean government tried to adapt ICTs to urban spaces to catch these two goals. Ubiquitous city, concept introduced by Mark Weiser in 1988, is a kind of ICTs based urban space which can provide IT services anytime and anywhere. This paper introduces the experience of developing ICTs-based urban planning and it’s implementation process and discusses the effect of the R&D based U-City test-bed project. For a community center of a residential zone in a newly developing city, spatial problems and citizen’s needs were identified to plan IT-based urban services. The paper also describes the structure and functions of Community O/S (COS) as an IT platform which controls data and urban devices such as media facades and U-poles. Not only one-way information but also Interactive services were included. Public creating activities using this platform also added –CO2 emission management and citizen making safety map, etc. The effects of the comprehensive U-City planning in S/W, H/W and human-ware were discussed on the case study of similar individual projects.

Keywords: ICTs-based urban planning, implementation, public IT service, U-City

Procedia PDF Downloads 325
35021 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 323
35020 Collaborative Online Learning for Lecturers

Authors: Lee Bih Ni, Emily Doreen Lee, Wee Hui Yean

Abstract:

This paper was prepared to see the perceptions of online lectures regarding collaborative learning, in terms of how lecturers view online collaborative learning in the higher learning institution. The purpose of this study was conducted to determine the perceptions of online lectures about collaborative learning, especially how lecturers see online collaborative learning in the university. Adult learning education enhance collaborative learning culture with the target of involving learners in the learning process to make teaching and learning more effective and open at the university. This will finally make students learning that will assist each other. It is also to cut down the pressure of loneliness and isolation might felt among adult learners. Their ways in collaborative online was also determined. In this paper, researchers collect data using questionnaires instruments. The collected data were analyzed and interpreted. By analyzing the data, researchers report the results according the proof taken from the respondents. Results from the study, it is not only dependent on the lecturer but also a student to shape a good collaborative learning practice. Rational concepts and pattern to achieve these targets be clear right from the beginning and may be good seen by a number of proposals submitted and include how the higher learning institution has trained with ongoing lectures online. Advantages of online collaborative learning show that lecturers should be trained effectively. Studies have seen that the lecturer aware of online collaborative learning. This positive attitude will encourage the higher learning institution to continue to give the knowledge and skills required.

Keywords: collaborative online learning, lecturers’ training, learning, online

Procedia PDF Downloads 456
35019 Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education

Authors: Melvin Chan, Chew Lee Teo

Abstract:

There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.

Keywords: continual professional development, knowledge building, learning paradigm, principle-based

Procedia PDF Downloads 130
35018 Using LMS as an E-Learning Platform in Higher Education

Authors: Mohammed Alhawiti

Abstract:

Assessment of Learning Management Systems has been of less importance than its due share. This paper investigates the evaluation of learning management systems (LMS) within educational setting as both an online learning system as well as a helpful tool for multidisciplinary learning environment. This study suggests a theoretical e-learning evaluation model, studying a multi-dimensional methods for evaluation through LMS system, service and content quality, learner`s perspective and attitudes of the instructor. A survey was conducted among 105 e-learners. The sample consisted of students at both undergraduate and master’s levels. Content validity, reliability were tested through the instrument, Findings suggested the suitability of the proposed model in evaluation for the satisfaction of learners through LMS. The results of this study would be valuable for both instructors and users of e-learning systems.

Keywords: e-learning, LMS, higher education, management systems

Procedia PDF Downloads 405
35017 Detect QOS Attacks Using Machine Learning Algorithm

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.

Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping

Procedia PDF Downloads 61
35016 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 187
35015 The Implementation of Organizational Ecoinnovativeness as an Expression of a Strategic Approach of an Organization

Authors: Marzena Hajduk-Stelmachowicz

Abstract:

This paper presents the reasons why the implementation of the organizational eco-innovation (based on requirements of the International Standard ISO 14001) can be an expression of a strategic organization approach. An elaboration about different issues associated with the Environmental Management Systems are given.

Keywords: envionmental management system, ISO 14001, organizational ecoinnovativeness, ecoinnovation

Procedia PDF Downloads 314
35014 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning

Authors: Kim Hyekyoung, Au Yunkyung

Abstract:

As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.

Keywords: young children, media literacy, recursive learning, education program

Procedia PDF Downloads 77
35013 Inquiry-based Science Education in Computer Science Learning in Primary School

Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin

Abstract:

Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.

Keywords: inquiry-based science education, student-centered learning, computer science, primary school

Procedia PDF Downloads 157
35012 Contribution of Automated Early Warning Score Usage to Patient Safety

Authors: Phang Moon Leng

Abstract:

Automated Early Warning Scores is a newly developed clinical decision tool that is used to streamline and improve the process of obtaining a patient’s vital signs so a clinical decision can be made at an earlier stage to prevent the patient from further deterioration. This technology provides immediate update on the score and clinical decision to be taken based on the outcome. This paper aims to study the use of an automated early warning score system on whether the technology has assisted the hospital in early detection and escalation of clinical condition and improve patient outcome. The hospital adopted the Modified Early Warning Scores (MEWS) Scoring System and MEWS Clinical Response into Philips IntelliVue Guardian Automated Early Warning Score equipment and studied whether the process has been leaned, whether the use of technology improved the usage & experience of the nurses, and whether the technology has improved patient care and outcome. It was found the steps required to obtain vital signs has been significantly reduced and is used more frequently to obtain patient vital signs. The number of deaths, and length of stay has significantly decreased as clinical decisions can be made and escalated more quickly with the Automated EWS. The automated early warning score equipment has helped improve work efficiency by removing the need for documenting into patient’s EMR. The technology streamlines clinical decision-making and allows faster care and intervention to be carried out and improves overall patient outcome which translates to better care for patient.

Keywords: automated early warning score, clinical quality and safety, patient safety, medical technology

Procedia PDF Downloads 178
35011 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 221
35010 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 31
35009 Satisfaction on English Language Learning with Online System

Authors: Suwaree Yordchim

Abstract:

The objective is to study the satisfaction on English with an online learning. Online learning system mainly consists of English lessons, exercises, tests, web boards, and supplementary lessons for language practice. The sample groups are 80 Thai students studying English for Business Communication, majoring in Hotel and Lodging Management. The data are analyzed by mean, standard deviation (S.D.) value from the questionnaires. The results were found that the most average of satisfaction on academic aspects are technological searching tool through E-learning system that support the students’ learning (4.51), knowledge evaluation on prepost learning and teaching (4.45), and change for project selections according to their interest, subject contents including practice in the real situations (4.45), respectively.

Keywords: English language learning, online system, online learning, supplementary lessons

Procedia PDF Downloads 465
35008 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure

Authors: Nico Rosamilia

Abstract:

The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).

Keywords: ESG ratings, non-financial information, value of firms, sustainable finance

Procedia PDF Downloads 83
35007 Remote Wireless Communications Lab in Real Time

Authors: El Miloudi Djelloul

Abstract:

Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.

Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)

Procedia PDF Downloads 515
35006 Learning Analytics in a HiFlex Learning Environment

Authors: Matthew Montebello

Abstract:

Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.

Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment

Procedia PDF Downloads 201
35005 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 52
35004 Utilization of Learning Resources in Enhancing the Teaching of Science and Technology Courses in Post Primary Institutions in Nigeria

Authors: Isah Mohammed Patizhiko

Abstract:

This paper aimed at discussing the important role learning resources play in enhancing the teaching and learning of science and technology courses in post primary institution in Nigeria. The paper highlighted the importance learning resources contributed to the effective understanding of the learners. The use of learning resources in the teaching of these courses will encourage teachers to be more exploratory and the learners to have more understanding. In this paper, different range of learning resources particularly common learning resources (learning resources not design primarily for education purposes) to enrich their teaching. The paper also highlighted how ordinary resource can be turned into an educational resource. Recommendations were proffered in the sourcing of learning resources ie from the market, library, institutions, museums, and dump refuse and concluded that good demonstration on the use of resources will engage the learner’s interest and will develop higher level of conceptual understanding in the learning area.

Keywords: enhance, learning, resources, science and technology, teaching

Procedia PDF Downloads 398
35003 Artificial Intelligence: Reimagining Education

Authors: Silvia Zanazzi

Abstract:

Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.

Keywords: education, artificial intelligence, teaching, learning

Procedia PDF Downloads 20
35002 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 179