Search results for: emotional recognition
2646 High Speed Image Rotation Algorithm
Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix
Procedia PDF Downloads 5072645 Forced-Choice Measurement Models of Behavioural, Social, and Emotional Skills: Theory, Research, and Development
Authors: Richard Roberts, Anna Kravtcova
Abstract:
Introduction: The realisation that personality can change over the course of a lifetime has led to a new companion model to the Big Five, the behavioural, emotional, and social skills approach (BESSA). BESSA hypothesizes that this set of skills represents how the individual is thinking, feeling, and behaving when the situation calls for it, as opposed to traits, which represent how someone tends to think, feel, and behave averaged across situations. The five major skill domains share parallels with the Big Five Factor (BFF) model creativity and innovation (openness), self-management (conscientiousness), social engagement (extraversion), cooperation (agreeableness), and emotional resilience (emotional stability) skills. We point to noteworthy limitations in the current operationalisation of BESSA skills (i.e., via Likert-type items) and offer up a different measurement approach: forced choice. Method: In this forced-choice paradigm, individuals were given three skill items (e.g., managing my time) and asked to select one response they believed they were “worst at” and “best at”. The Thurstonian IRT models allow these to be placed on a normative scale. Two multivariate studies (N = 1178) were conducted with a 22-item forced-choice version of the BESSA, a published measure of the BFF, and various criteria. Findings: Confirmatory factor analysis of the forced-choice assessment showed acceptable model fit (RMSEA<0.06), while reliability estimates were reasonable (around 0.70 for each construct). Convergent validity evidence was as predicted (correlations between 0.40 and 0.60 for corresponding BFF and BESSA constructs). Notable was the extent the forced-choice BESSA assessment improved upon test-criterion relationships over and above the BFF. For example, typical regression models find BFF personality accounting for 25% of the variance in life satisfaction scores; both studies showed incremental gains over the BFF exceeding 6% (i.e., BFF and BESSA together accounted for over 31% of the variance in both studies). Discussion: Forced-choice measurement models offer up the promise of creating equated test forms that may unequivocally measure skill gains and are less prone to fakability and reference bias effects. Implications for practitioners are discussed, especially those interested in selection, succession planning, and training and development. We also discuss how the forced choice method can be applied to other constructs like emotional immunity, cross-cultural competence, and self-estimates of cognitive ability.Keywords: Big Five, forced-choice method, BFF, methods of measurements
Procedia PDF Downloads 952644 The Trauma Suffered by Left behind Children and Its Impact on Their Emotional Development: A Pilot Study with Brazilian Immigrants in the United States
Authors: Liliane Clark
Abstract:
Immigrating to a different country may imply having to handle many difficult exertions. There is a particular issue that has to be endured by some immigrants: the children they had to leave behind. It is a phenomenon that occurs with certain frequency. Surprisingly, despite the fact that immigration in the United States is such a large proceeding, there is not much research about the topic in America exploring the trauma of the abandonment caused by this separation and its consequences on the mental health of those children. The term “left behind children” is usually applied to children who were left behind by their parents in their original nation under the care of a noteworthy relative, frequently the grandparents, when they moved to another country. This preliminary research, which is a partial study projected for a doctoral thesis, investigated whether the trauma of abandonment experienced by ten left behind children had affected their emotional development. The Strengths and Difficulties Questionnaire (SDQ) and a brief interview were utilized to assess the information. The SDQ explored scales such as emotional symptoms, conduct problems, hyperactivity, peer problems and prosocial behavior. In this pilot study, the results indicated that all these issues had some sort of significant correlation between them. During the interviews, the participants or their parents identified a range of symptoms: anxiety disorder, eating disorders, panic attacks, psychotic-like experiences, drug use and depression. Hence, it seems that there is a connection between the trauma of abandonment suffered due to the separation and the children’s consequent symptomatic behavior. Further studies are indeed necessary to validate the initial results of this investigation.Keywords: abandonment, parent migration, psychological problems, trauma
Procedia PDF Downloads 1892643 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing
Procedia PDF Downloads 2862642 Leadership and Corporate Social Responsibility: The Role of Spiritual Intelligence
Authors: Meghan E. Murray, Carri R. Tolmie
Abstract:
This study aims to identify potential factors and widely applicable best practices that can contribute to improving corporate social responsibility (CSR) and corporate performance for firms by exploring the relationship between transformational leadership, spiritual intelligence, and emotional intelligence. Corporate social responsibility is when companies are cognizant of the impact of their actions on the economy, their communities, the environment, and the world as a whole while executing business practices accordingly. The prevalence of CSR has continuously strengthened over the past few years and is now a common practice in the business world, with such efforts coinciding with what stakeholders and the public now expect from corporations. Because of this, it is extremely important to be able to pinpoint factors and best practices that can improve CSR within corporations. One potential factor that may lead to improved CSR is spiritual intelligence (SQ), or the ability to recognize and live with a purpose larger than oneself. Spiritual intelligence is a measurable skill, just like emotional intelligence (EQ), and can be improved through purposeful and targeted coaching. This research project consists of two studies. Study 1 is a case study comparison of a benefit corporation and a non-benefit corporation. This study will examine the role of SQ and EQ as moderators in the relationship between the transformational leadership of employees within each company and the perception of each firm’s CSR and corporate performance. Project methodology includes creating and administering a survey comprised of multiple pre-established scales on transformational leadership, spiritual intelligence, emotional intelligence, CSR, and corporate performance. Multiple regression analysis will be used to extract significant findings from the collected data. Study 2 will dive deeper into spiritual intelligence itself by analyzing pre-existing data and identifying key relationships that may provide value to companies and their stakeholders. This will be done by performing multiple regression analysis on anonymized data provided by Deep Change, a company that has created an advanced, proprietary system to measure spiritual intelligence. Based on the results of both studies, this research aims to uncover best practices, including the unique contribution of spiritual intelligence, that can be utilized by organizations to help enhance their corporate social responsibility. If it is found that high spiritual and emotional intelligence can positively impact CSR effort, then corporations will have a tangible way to enhance their CSR: providing targeted employees with training and coaching to increase their SQ and EQ.Keywords: corporate social responsibility, CSR, corporate performance, emotional intelligence, EQ, spiritual intelligence, SQ, transformational leadership
Procedia PDF Downloads 1282641 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 1642640 Human Identification Using Local Roughness Patterns in Heartbeat Signal
Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori
Abstract:
Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification
Procedia PDF Downloads 4052639 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings
Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres
Abstract:
This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression
Procedia PDF Downloads 472638 Subdued Electrodermal Response to Empathic Induction Task in Intimate Partner Violence (IPV) Perpetrators
Authors: Javier Comes Fayos, Isabel Rodríguez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero Martínez, Luis Moya Albiol
Abstract:
Empathy is a cognitive-affective capacity whose deterioration is associated with aggressive behaviour. Deficient affective processing is one of the predominant risk factors in men convicted of intimate partner violence (IPV perpetrators), since it makes their capacity to empathize very difficult. The objective of this study is to compare the response of electrodermal activity (EDA), as an indicator of emotionality, to an empathic induction task, between IPV perpetrators and men without a history of violence. The sample was composed of 51 men who attended the CONTEXTO program, with penalties for gender violence under two years, and 47 men with no history of violence. Empathic induction was achieved through the visualization of 4 negative emotional-eliciting videos taken from an emotional induction battery of videos validated for the Spanish population. The participants were asked to actively empathize with the video characters (previously pointed out). The psychophysiological recording of the EDA was accomplished by the "Vrije Universiteit Ambulatory Monitoring System (VU-AMS)." An analysis of repeated measurements was carried out with 10 intra-subject measurements (time) and "group" (IPV perpetrators and non-violent perpetrators) as the inter-subject factor. First, there were no significant differences between groups in the baseline AED levels. Yet, a significant interaction between the “time” and “group” was found with IPV perpetrators exhibiting lower EDA response than controls after the empathic induction task. These findings provide evidence of a subdued EDA response after an empathic induction task in IPV perpetrators with respect to men without a history of violence. Therefore, the lower psychophysiological activation would be indicative of difficulties in the emotional processing and response, functions that are necessary for the empathic function. Consequently, the importance of addressing possible empathic difficulties in IPV perpetrator psycho-educational programs is reinforced, putting special emphasis on the affective dimension that could hinder the empathic function.Keywords: electrodermal activity, emotional induction, empathy, intimate partner violence
Procedia PDF Downloads 2022637 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave
Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora
Abstract:
The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.Keywords: Enterococcus faecalis, image treatment, octave and network neuronal
Procedia PDF Downloads 2302636 To Study the New Invocation of Biometric Authentication Technique
Authors: Aparna Gulhane
Abstract:
Biometrics is the science and technology of measuring and analyzing biological data form the basis of research in biological measuring techniques for the purpose of people identification and recognition. In information technology, biometrics refers to technologies that measure and analyze human body characteristics, such as DNA, fingerprints, eye retinas and irises, voice patterns, facial patterns and hand measurements. Biometric systems are used to authenticate the person's identity. The idea is to use the special characteristics of a person to identify him. These papers present a biometric authentication techniques and actual deployment of potential by overall invocation of biometrics recognition, with an independent testing of various biometric authentication products and technology.Keywords: types of biometrics, importance of biometric, review for biometrics and getting a new implementation, biometric authentication technique
Procedia PDF Downloads 3222635 A Study on How to Influence Players Interactive Behavior of Victory or Defeat in Party Games
Authors: Shih-Chieh Liao, Cheng-Yan Shuai
Abstract:
"Party game" is a game mode that enables players to maintain a good social and interactive experience. The common game modes include Teamwork, Team competitive, Independent competitive, Battle Royale. Party games are defined as a game with easy rules, easy to play, quickly spice up a party, and support four to six players. It also needs to let the player feel satisfied no matter victory or defeat. However, players may feel negative or angry when the game is imbalanced, especially when they play with teammates. Some players care about winning or losing, and they will blame it on the game mechanics. What is more serious is that the player will cause the argument, which is unnecessary. These behaviors that trigger quarrels and negative emotions often originate from the player's determination of the victory and the ratio of victory during the competition. In view of this, our research invited a group of subjects to the experiment, which is going to inspect player’s emotions by Electromyography (EMG) and Electrodermal Activity (EDA) when they are playing party games with others. When a player wins or loses, the negative and positive feeling will be recorded from the game beginning to the end. At the same time, physiologic and emotional reactions are also being recorded in each part of the game. The game will be designed as telling the interaction when players are in the quest of a party game. The experiment content includes the emotional changes affected by the physiological values of game victory and defeat between “player against friend” and “player against stranger.” Through this experiment, the balance between winners and losers lies in the basis of good game interaction and game interaction in the game and explore the emotional positive and negative effects caused by the result of the party game. The result shows that “player against friend” has a significant negative emotion and significant positive emotion at “player against stranger.” According to the result, the player's experience will be affected with winning rate or form when they play the party game. We suggest the developer balance the game with our experiment method to let players get a better experience.Keywords: party games, biofeedback, emotional responses, user experience, game design
Procedia PDF Downloads 1642634 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 1272633 Visualization-Based Feature Extraction for Classification in Real-Time Interaction
Authors: Ágoston Nagy
Abstract:
This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.Keywords: gesture recognition, machine learning, real-time interaction, visualization
Procedia PDF Downloads 3542632 Three Visions of a Conflict: The Case of La Araucania, Chile
Authors: Maria Barriga
Abstract:
The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.Keywords: visual culture, power, conflict, indigenous people
Procedia PDF Downloads 2862631 Developmental Psycholinguistic Approach to Conversational Skills - A Continuum of the Sensitivity to Gricean Maxims
Authors: Zsuzsanna Schnell, Francesca Ervas
Abstract:
Background: the experimental pragmatic study confirms a basic tenet in the Relevance theoretical views in language philosophy. It draws up a developmental trajectory of the maxims, revealing the cognitive difficulty of their interpretation, their relative place to each other, and the order they may follow in development. A central claim of the present research is that social-cognitive skills play a significant role in inferential meaning construction. Children passing the False Belief Test are significantly more successful in tasks measuring the recognition of the infringement of conversational maxims. Aims and method: Preschoolers’ conversational skills and pragmatic competence is examined in view of their mentalization skills. In doing so it use a measure of linguistic tasks, containing 5 short scenarios for each Gricean maxim. it measure preschoolers’ ToM performance with a first- and a second order ToM task and compare participants’ ability to recognize the infringement of the Gricean maxims in view of their social cognitive skills. Results: Findings suggest that Theory of Mind has a predictive force of 75% concerning the ability to follow Gricean maxims efficiently. ToM proved to be a significant factor in predicting the group’s performance and success rates in 3 out of 4 maxim infringement recognition tasks: in the Quantity, Relevance and Manner conditions, but not in the Quality trial. Conclusions: the results confirm that children’s communicative competence in social contexts requires the development of higher-order social-cognitive reasoning, and reveal the cognitive effort needed for the recognition of the infringement of each maxim, yielding a continuum of their cognitive difficulty and trajectory of development.Keywords: maxim infringement recognition, social cognition, Gricean maxims, developmental pragmatics
Procedia PDF Downloads 122630 Becoming a Warrior: Conspiracy, Dramaturgy, and Follower Charisma on the Far Right
Authors: Anthony Albanese
Abstract:
While much of the literature concerning Max Weber’s concept of charisma has addressed the importance of the follower’s recognition of and devotion to the charismatic leader, very little has been said about the processes that lead to the development of follower charisma. This article examines this largely overlooked aspect of the concept, as doing so (1) exacts the dynamics behind charisma’s transferability by moving beyond follower-centric models that focus on the recognition of the leader and toward one that emphasizes the follower’s generation and exhibition of charisma, (2) bridges a crucial gap between the rather wanting “losers of modernization” thesis and the social actor’s proclivity to produce stories and self-cast in said stories, (3) presents authoritarian dispositions as a reaction to the weakening effects everydayness have on charisma, and (4) complicates Weber’s formulation by reassessing the role of continually demonstrable mastery. To illustrate these dynamics, one should turn to the January 6th Capitol attack in the United States.Keywords: max weber, extremism, right-wing populism, charisma
Procedia PDF Downloads 932629 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking
Authors: Adi Gielgun-Katz, Alina S. Rusu
Abstract:
In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.Keywords: social-emotional learning, photography, education program, adolescents
Procedia PDF Downloads 882628 Metallacyclodimeric Array Containing Both Suprachannels and Cages: Selective Reservoir and Recognition of Diiodomethane
Authors: Daseul Lee, Jeong Jun Lee, Ok-Sang Jung
Abstract:
Self-assembly of a series of ZnX2 (X- = Cl-, Br-, and I-) with 2,3-bis(4’-nicotinamidephenoxy)naphthalene (L) as a new bidentate pyridyl-donor ligand yields systematic metallacyclodimeric unit, [ZnX2L]2. The supramolecule constitutes a characteristically stacked forming both 1D suprachannels and cages. Weak C-H⋯π and inter-digitated π⋯π interactions are main driving forces in the formation of both suprachannels and cages. The slightly different features between the suprachannel and cage have been investigated by 1H NMR and TG analysis, which solvent quantitatively exchange within only suprachannels. Photo-unstable CH2I2 molecules are stabilized via capturing within suprachannels, which is monitored by UV-Vis spectroscopy. Furthermore, the photoluminescence intensity, from the chromophore naphthyl moiety of [ZnCl2L]2, gradually decreases with the addition of CH2I2. And washing off the CH2I2 by dichloromethane returned the PL intensity back to its approximately original signal.Keywords: metallacyclodimer, suprachannel, π⋯π interaction, molecular recognition
Procedia PDF Downloads 3222627 Raising Awareness to Health Professionals about Emotional Needs of Families Suffering Perinatal Loss through a Short Documentary
Authors: Elisenda Camprecios, Alicia Macarrila, Montse Albiol, Neus Garriga Garriga
Abstract:
The loss of a child during pregnancy, or shortly after birth, is not a common occurrence, but it is a prevalent fact in our society. When this loss happens, life and death walk together. The grief that parents experience following a perinatal loss is a devastating experience. Professionals are aware that the quality of care offered during this first period is crucial to support the families experiencing a perinatal loss and meet their needs. However, it is not always easy for the health care professionals to know what to say and what to do in these difficult circumstances. Given the complexity of the Health, painful process that a family must face when is affected by such loss, we believe that the creation of a protocol that pays special attention to the emotional needs of those couples can be a very valuable tool for the professionals. The short documentary named ‘When the illusion vanished’ was created as part of the material of this protocol, which focuses on the emotional needs of the families who have suffered a perinatal loss. This video is designed to see what impact has a perinatal death and to raise awareness among professionals working in this field. The methodology is based on interviews with couples who have experienced perinatal death and to professionals who accompany families suffering from perinatal loss. The use of sensitive and empathized words, being encouraged to express feelings, respect the time, appropriate training for the professionals are some of the issues reflected in this documentary. We believe that this video has contributed to help health care professionals to empathize and understand the need to be able to accompany these families with the appropriate care, respectful, empathetic attitude and professionalism so that they can start the path to a ‘healthy’ mourning.Keywords: neonatal loss, midwifery, perinatal bereavement, perinatal loss
Procedia PDF Downloads 1502626 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation
Authors: Nawras Kurzom, Avi Mendelsohn
Abstract:
The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.Keywords: musical tension, declarative memory, learning and memory, musical perception
Procedia PDF Downloads 982625 Neural Correlates of Attention Bias to Threat during the Emotional Stroop Task in Schizophrenia
Authors: Camellia Al-Ibrahim, Jenny Yiend, Sukhwinder S. Shergill
Abstract:
Background: Attention bias to threat play a role in the development, maintenance, and exacerbation of delusional beliefs in schizophrenia in which patients emphasize the threatening characteristics of stimuli and prioritise them for processing. Cognitive control deficits arise when task-irrelevant emotional information elicits attentional bias and obstruct optimal performance. This study is investigating neural correlates of interference effect of linguistic threat and whether these effects are independent of delusional severity. Methods: Using an event-related functional magnetic resonance imaging (fMRI), neural correlates of interference effect of linguistic threat during the emotional Stroop task were investigated and compared patients with schizophrenia with high (N=17) and low (N=16) paranoid symptoms and healthy controls (N=20). Participants were instructed to identify the font colour of each word presented on the screen as quickly and accurately as possible. Stimuli types vary between threat-relevant, positive and neutral words. Results: Group differences in whole brain effects indicate decreased amygdala activity in patients with high paranoid symptoms compared with low paranoid patients and healthy controls. Regions of interest analysis (ROI) validated our results within the amygdala and investigated changes within the striatum showing a pattern of reduced activation within the clinical group compared to healthy controls. Delusional severity was associated with significant decreased neural activity in the striatum within the clinical group. Conclusion: Our findings suggest that the emotional interference mediated by the amygdala and striatum may reduce responsiveness to threat-related stimuli in schizophrenia and that attenuation of fMRI Blood-oxygen-level dependent (BOLD) signal within these areas might be influenced by the severity of delusional symptoms.Keywords: attention bias, fMRI, Schizophrenia, Stroop
Procedia PDF Downloads 2012624 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 1242623 Integrated Gesture and Voice-Activated Mouse Control System
Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant
Procedia PDF Downloads 142622 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 1202621 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features
Authors: Ashis Pradhan, Mohan P. Pradhan
Abstract:
Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition
Procedia PDF Downloads 4152620 Implications for Counseling and Service Delivery on the Psychological Trajectories of Women Undergoing in Vitro Fertilization (IVF) Treatment in Hong Kong
Authors: Tong Mei Yan
Abstract:
Introduction: The experience of infertility could be excruciating but has not received much attention in Hong Kong. The strong Confucian culture pressures couples to continue their family lineage resulting in women facing more stress than men in the social-cultural milieu. In Vitro Fertilization (IVF) treatment is one of the common ways to deal with the problem. Abundant literature exists the psychological trajectories of people receiving IVF treatment in Europe, the USA and other east Asian societies but not in Hong Kong. Aim: This study aims to highlight the circumstances and needs of the women before, during and after IVF treatment through examining their lived experiences. It is hoped that the public, once informed of regarding their tribulations and needs , would support the adequate provision of the required psychological support . Methods: Qualitative analysis was adopted in this study. In-depth interviews were conducted with six women who have undergone at least one complete cycle of IVF treatment within the past five years. Data was analyzed through thematic analysis and narrative analysis. Results: 4 broad themes were found, including (i) emotional responses; (ii) experiences in medical consultation; (iii) impacts of the treatment; and (iv) their coping strategies. Additionally, specific events in three cases were chosen for narrative analysis to further examine their unresolved emotional distress and the ethical issues. Conclusion: IVF treatment distressed the interviewees immensely, both physically and psychologically, with the negative emotions outweighing their physical strains, a result unexpected by all of the interviewees. The pressure for lineage continuation, the demanding treatment process and the dearth of support from health professionals all contribute to their emotional pain which could linger for both successful and unsuccessful cases. Although a number of coping strategies were attempted, most of them completely failed to ease their psychological tension. The findings of this study therefore evidence the need for psychological support for this population. A service model to cater their needs of IVF treatment before, during and after treatment is therefore proposed.Keywords: coping strategies, emotional experiences, impacts of IVF, infertility, IVF treatment, medical experiences
Procedia PDF Downloads 892619 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.Keywords: cognition, world music, artificial intelligence, Thayer’s matrix
Procedia PDF Downloads 812618 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 1022617 Elderly Care for Bereaved Parents Following the Death of an Only Child in Mainland China
Authors: Chao Fang
Abstract:
Due to the Confucian emphasis on filial piety and an undeveloped social welfare system in mainland China, adult children are both socially and legally obliged to care for their parents, including financial assistance and physical care as well as emotional and social support. Thus a family-centred care pattern for elderly people has been firmly established in China. However, because of the nationwide ‘One Child Policy’, over one million parents are excluded from such care because of the death of their only child and, therefore, their primary caregiver. Without their child’s support, these parents must manage the day to day challenges of growing old alone, with little support from society. By overturning established expectations of a ‘good’ elderly life, the loss of an only child may be accompanied by social and self-stigmatization, pushing these bereaved parents to the margin of society and threatening their economic, physical, emotional and social well-being. More importantly, since the One Child Policy was implemented from the late 1970s and early 1980s, the first generation of bereaved or ‘Shidu’ parents has reached an age at which those parents need elderly care. However, their predicament has been largely ignored. This paper reports on a qualitative interview study that found elderly care to be the main concern for Shidu parents’ everyday life. The paper identifies and discusses the concerns these bereaved parents raised about the prospect of having nowhere to turn at a time of increased need for financial, physical, social and emotional support in old age. The paper also identifies how Shidu parents have been coming together in grief and negotiate to make their predicament known to the government and wider society and to re-define their elderly life by rebuilding a sense of ‘family’.Keywords: culture, bereavement, China, elderly care
Procedia PDF Downloads 273