Search results for: residual water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9195

Search results for: residual water

2745 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States

Authors: Arkaprabha Bhattacharyya, Makarand Hastak

Abstract:

The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.

Keywords: economic growth, infrastructure development, infrastructure projects, strategic investment

Procedia PDF Downloads 169
2744 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming

Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi

Abstract:

This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.

Keywords: soft robotics, soft actuator, frog robot, 3D printing

Procedia PDF Downloads 99
2743 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 136
2742 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima

Authors: Rajesh Chandra, Uttam K. Ghosh

Abstract:

This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.

Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid

Procedia PDF Downloads 155
2741 Study of Strontium Sorption onto Indian Bentonite

Authors: Pankaj Pathak, Susmita Sharma

Abstract:

Incessant industrial growth fulfill the energy demand of present day society, at the same time it produces huge amount of waste which could be hazardous or non-hazardous in nature. These wastes are coming out from different sources viz, nuclear power, thermal power, coal mines which contain different types of contaminants and one of the emergent contaminant is strontium, used in the present study. The isotope of strontium (Sr90) is radioactive in nature with half-life of 28.8 years and permissible limit of strontium in drinking water is 1.5 ppm. Above the permissible limit causes several types of diseases in human being. Therefore, safe disposal of strontium into ground becomes a biggest challenge for the researchers. In this context, bentonite is being used as an efficient material to retain strontium onto ground due to its specific physical, chemical and mineralogical properties which exhibits higher cation exchange capacity and specific surface area. These properties influence the interaction between strontium and bentonite, which is quantified by employing a parameter known as distribution coefficient. Batch test was conducted, and sorption isotherms were modelled at different interaction time. The pseudo first-order and pseudo second order kinetic models have been used to fit experimental data, which helps to determine the sorption rate and mechanism.

Keywords: bentonite, interaction time, sorption, strontium

Procedia PDF Downloads 303
2740 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System

Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski

Abstract:

A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater

Procedia PDF Downloads 84
2739 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 94
2738 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 463
2737 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission

Authors: Bo Wang

Abstract:

As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.

Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement

Procedia PDF Downloads 340
2736 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 381
2735 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.

Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code

Procedia PDF Downloads 412
2734 Optimization in the Compressive Strength of Iron Slag Self-Compacting Concrete

Authors: Luis E. Zapata, Sergio Ruiz, María F. Mantilla, Jhon A. Villamizar

Abstract:

Sand as fine aggregate for concrete production needs a feasible substitute due to several environmental issues. In this work, a study of the behavior of self-compacting concrete mixtures under replacement of sand by iron slag from 0.0% to 50.0% of weight and variations of water/cementitious material ratio between 0.3 and 0.5 is presented. Control fresh state tests of Slump flow, T500, J-ring and L-box were determined. In the hardened state, compressive strength was determined and optimization from response surface analysis was performed. The study of the variables in the hardened state was developed based on inferential statistical analyses using central composite design methodology and posterior analyses of variance (ANOVA). An increase in the compressive strength up to 50% higher than control mixtures at 7, 14, and 28 days of maturity was the most relevant result regarding the presence of iron slag as replacement of natural sand. Considering the obtained result, it is possible to infer that iron slag is an acceptable alternative replacement material of the natural fine aggregate to be used in structural concrete.

Keywords: ANOVA, iron slag, response surface analysis, self-compacting concrete

Procedia PDF Downloads 143
2733 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 53
2732 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 88
2731 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress

Procedia PDF Downloads 358
2730 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 195
2729 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 91
2728 Identification of Paleogeomorphology at Kedulan Temple, Sleman, Yogyakarta

Authors: Virgina Claudia Latengke, Muhaammad Nur Arifin, Vanny Septia Sundari

Abstract:

Kedulan Temple is located in Dusun Kedulan, Sleman, Yogyakarta, Indonesia at coordinates S 07o 44’ 57’, E 110o 28’ 17’. Kedulan Temple is a trace of the relics of life in the 3 century AD. The Kedulan Temple including exhumed landforms, which the primordial landform is first surface topography, then buried under cover mass and exposed or re-inscribed. Recognized by the existence of ancient soil (paleosoil) and ancient objects. Seen from the type of soil that closes the temple, there are 13 layers of lava type, so it is estimated that the lava that buried the temple came from 13 times the eruption of Mount Merapi. The material that buries the base of this temple is the pyroclastic surge deposits in 3 layers, each of which is limited by a thin layer of paleosol, the sediments are 1445+/-50 yBP, 1175+/-50 yBP, and 1060+/-40 yBP. This temple is buried and dug again at 940+/-100 yBP. Furthermore, the temple affected by earthquake, so the floor and foundation becomes bumpy and most of the temple stone are thrown. The temple is left alone, until exposed to hot clouds at 1285 M (740+/-50yBP). Next, repeatedly buried lava in 4 periods, in 1587 M (360+/-50 yBP, 240+/-50 yBP, 200+/-50 yBP and unknown date). From studying this temple, can be known paleogeomorphology process that occurred in Yogyakarta, especially related to the volcanic activity of Mount Merapi. Until now, the water is still flowing around the temple so there is a fluvial process that began to take a role in the temple.

Keywords: Kedulan temple, paleogeomorphology, buried, mount Merapi, Yogyakarta

Procedia PDF Downloads 173
2727 Determination of Resistance to Freezing of Bonded Façade Joint

Authors: B. Nečasová, P. Liška, J. Šlanhof

Abstract:

Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.

Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure

Procedia PDF Downloads 389
2726 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum

Authors: Nassira Ouslimani

Abstract:

The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.

Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia

Procedia PDF Downloads 89
2725 Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment

Authors: Okorowo Cyril Agochi

Abstract:

The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.

Keywords: natural combustion, emission, environment, flaring, gas, health, Niger Delta

Procedia PDF Downloads 262
2724 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: A. K. Areamu, J. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: efficiency, energy, exergy, heating insolation

Procedia PDF Downloads 366
2723 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism

Authors: Jun-ya Nagase

Abstract:

There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion

Procedia PDF Downloads 430
2722 Development and Automation of Medium-Scale NFT Hydroponic Systems: Design Methodology and State of the Art Review

Authors: Oscar Armando González-Marin, Jhon F. Rodríguez-León, Oscar Mota-Pérez, Jorge Pineda-Piñón, Roberto S. Velázquez-González., Julio C. Sosa-Savedra

Abstract:

Over the past six years, the World Meteorological Organization (WMO) has recorded the warmest years since 1880, primarily attributed to climate change. In addition, the overexploitation of agricultural lands, combined with food and water scarcity, has highlighted the urgent need for sustainable cultivation methods. Hydroponics has emerged as a sustainable farming technique that enables plant cultivation using nutrient solutions without the requirement for traditional soil. Among hydroponic methods, the Nutrient Film Technique (NFT) facilitates plant growth by circulating a nutrient solution continuously. This approach allows the monitoring and precise control of nutritional parameters, with potential for automation and technological integration. This study aims to present the state of the art of automated NFT hydroponic systems, discussing their design methodologies and considerations for implementation. Moreover, a medium-scale NFT system developed at CICATA-QRO is introduced, detailing its current manual management and progress toward automation.

Keywords: automation, hydroponics, nutrient film technique, sustainability

Procedia PDF Downloads 37
2721 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato

Authors: M. J. Falade

Abstract:

Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.

Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity

Procedia PDF Downloads 281
2720 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: conductive yarns, moisture textile sensor, industry, material

Procedia PDF Downloads 246
2719 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 432
2718 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed

Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang

Abstract:

In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.

Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools

Procedia PDF Downloads 259
2717 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles

Procedia PDF Downloads 398
2716 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing

Procedia PDF Downloads 147